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F or all the talk these days about the differences between nations and 
peoples across the globe, there exists far more sharing of cuisines, reli-
gions, ideas, and cultures than ever before. In the West in general, and 
the United States in particular, the last few decades have seen a rise in 

the acceptance of many seemingly new customs and cultures from the East. 
Putting aside for the moment the fact that many of these beliefs and practices 
are found among Native Americans, to the majority of the U.S. population, they 
are unfamiliar.

One such belief is that of the mind–body connection. Although taken for 
granted in Eastern philosophies, this concept can be foreign to many living 
in Westernized nations, where the mindset seems to be more towards reduc-
tionism than holistic thought. Psychophysiology is essentially the study of this 
mind–body connection, or the relationship between the physiological and the 
psychological. The first known use of the term was in 18391 and its popularity 
grew rapidly in the 1960s, peaking around 1980 and then going into a steady 
decline. 2 However, this is apparently not a reflection on the field of psycho-
physiology, which is quite active and boasts a number of international journals 
covering the topic.

What is new in this Advances in Computational Psychophysiology supple-
ment is the marrying of psychophysiology with the relatively recent surge in 
the power of computers. This has allowed psychophysiology researchers to 
perform far more complex analyses of their data, as well as incorporate tech-
nologies that can provide much richer information and therefore a deeper 
understanding of the processes involved. Powerful imaging technologies such 
as positron emission tomography and functional magnetic resonance imaging 
are enabling researchers to look inside the brain with unprecedented clarity, as 
well as in real time. This technology is allowing them to better understand and 
potentially treat a range of neurological disorders including neurodegenera-
tive diseases, mild cognitive impairment, attention deficit hyperactivity disor-
der, psychiatric disorders, stroke, autism, and depression, among others. Much 
of this work is translational in nature, with a clear focus on helping patients in a 
fundamental way.

This research also has ramifications for how we might interact with comput-
ers in the future through brain–machine interfaces. The ability to collect and 
analyze multimodal measurements/inputs, in combination with advanced 
machine learning techniques may lead to a better grasp of the complexities of 
human emotions and how we both experience emotion and perceive it in oth-
ers. In the future, machine learning technology could even conceivably aid in 
the diagnosis of depression and predict suicidal tendencies.

This supplement touches on a number of these topics and provides just a 
sample of the many ways in which the field of computational psychophysiology 
is growing and maturing. In addition to shedding light on many important ar-
eas of psychology, it may also provide a medium through which the mind–body 
connection can be appreciated and understood by a broader audience.

Sean Sanders, Ph.D.
Editor, Custom Publishing
Science/AAAS

1www.merriam-webster.com/dictionary/psychophysiology
2Google Books Ngram Viewer, bit.ly/1PBxyNB
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Advances in Computational Psychophysiology reflects an intention on the 
part of the authors to introduce a new interdisciplinary field. Naming 
subfields within the disciplines of psychology and neuroscience has 
played an important role in directing research efforts. 

Both the terms psychophysiology and computation have long been used in 
the study of human behavior, and the combination seems apt. The majority of the 
papers presented in this volume emphasize how important bodily measures are 
for the study of a wide variety of mental and physical disorders—a very traditional 
use of psychophysiology—and the incorporation of quantitative methods for in-
terpreting data is clearly important. 

The authors surely intend to provide methods and direction to researchers 
who are examining the nonbrain physiological processes, as a response to the 
findings that many of our thought processes draw on metaphors based upon 
the structure and behavior of the human body (1). The study of the embodied 
mind has resulted from, and increased research into, these ideas. This goal is 
most explicitly stated by Van Dam et al. (p. 16), who argue that the default state 
of brain activity can best be seen as a bodily state that produces changes in brain 
networks (2). 

These articles also promote quantitative methods that summarize the output 
of various measures of the body and brain. For example, Zhang et al. (p. 30) ad-
vocate for single-trial analysis of electroencephalographic oscillations to study 
decision making, and Zhang et al. (p. 40) use neurofeedback as a method to im-
prove working memory. Further, novel methods for acquiring data are discussed, 
such as use of the Internet (Zhao et al., p. 51), musical stimulation (Lu, Wu, and 
Yao, p. 47), and acupuncture (Qin et al., p. 38). 

This supplement highlights how the synthesis of new measurement methods, 
quantitative analyses, and awareness of the interaction between the body and 
the brain can illuminate the way specific operations and tasks are carried out in 
the brain, such as conflict processing (Yang et al., p. 33) and implicit sequence 
learning (Fu et al., p. 22). Notably, Woo and Wager summarize the development 
of predictive methods, including multivoxel pattern analysis for magnetic reso-
nance imaging (p. 18). 

It may be well to consider both the intended consequences of introducing 
the topic of computational psychophysiology, but also the unintended 
consequences. It would be unfortunate, for example, if an increased emphasis 
on this field led researchers to substitute peripheral measures in place of brain-
imaging methods. As the field progresses, researchers will need to find a good 
balance between now traditional imaging methods with those introduced in this 
volume.

Although understanding the embodied mind is essential, proponents of the 
computational psychophysiology approach should remember that the brain is 
also an organ that is a part of the body. 

Michael I. Posner, Ph.D.
Professor Emeritus
University of Oregon

1G. Lakoff, M. Johnson, Philosophy in the Flesh (Basic Books, New York, 1999).
2M. E. Raichle, J. Neurosci. 29, 12729 (2009). 

Introducing 
computational 
psychophysiology
The majority of the 
papers presented in 
this volume emphasize 
how important bodily 
measures are for the 
study of a wide variety 
of mental and physical 
disorders.

W e are pleased to introduce this special supplement, Advances in 
Computational Psychophysiology, which encompasses contem-
porary research using computational methodologies to explore 
psychophysiological processes related to the interaction among the 

human brain, body, mind, and behavior. This special supplement also explores 
novel applications of computational psychophysiology, such as biomarker identi-
fication for mental illness.

The field of psychophysiology investigates the physiological basis of psycho-
logical processes. Working at the intersection of the mind and body, psycho-
physiology studies the effects of psychological states on physiological processes 
and vice-versa. In its nascent stages, psychophysiological research predominantly 
focused on relatively peripheral markers of autonomic nervous system activity by 
measuring fluctuations in a subject’s electrodermal activity (EDA), electromyo-
gram (EMG), electrogastrogram (EGG), electrocardiogram (ECG), heart rate, heart 
rate variability (HRV), respiration rate, electrooculogram (EOG), and pupillary dila-
tion. In recent years, psychophysiology has begun to focus on the central nervous 
system, partially as a result of increasing accessibility and growth in measures of 
brain activity, such as event-related potentials (ERPs), magnetic encephalography 
(MEG), positron emission tomography (PET), and functional magnetic resonance 
imaging (fMRI). These methodologies offer more proximal measurement of brain 
(and mind) activity than indicators of the autonomic nervous system, which re-
quire inferences from fluctuations in peripheral responses.

To study the human brain, mind, and behavior, autonomic and central psy-
chophysiological indices must be analyzed in combination, a feat that requires 
advanced computational approaches. The implementation of these approaches 
in psychophysiology is the focus of this supplement. Computational psychophysi-
ology is an interdisciplinary research field that employs methods from the disci-
plines of psychology, physiology, neuroscience, computer science, mathematics, 
physics, and others to model physiological activity in relation to the psychological 
components of human behavior. Computational modeling provides a framework 
for understanding the numerous physiological processes underlying complex hu-
man mental states and behavior. Computational models can be used to simulate 
and predict psychological outcomes based on different physiological states or 
experimental manipulations. 

This new direction will broaden the field of psychophysiology by allowing for 
the identification and integration of multimodal signals to test specific models of 
mental states and psychological processes. Additionally, such approaches will al-
low for the extraction of multiple signals from large-scale multidimensional data, 
with a greater ability to differentiate signals embedded in background noise. Fur-
ther, these approaches will allow for a better understanding of the complex psy-
chophysiological processes underlying brain disorders such as autism spectrum 
disorder, depression, and anxiety. Given the widely acknowledged limitations of 
psychiatric nosology and the limited treatment options available, new compu-
tational models may provide the basis for a multidimensional diagnostic system 
and potentially new treatment approaches. 

Applying computational data analysis and modeling to psychophysiological 
signals may thus help to identify new phenotypes for normal and abnormal psy-
chological functions. The further development of computational strategies has 
the promise of providing large-scale models of the neural substrates of human 
behavior.

Bin Hu, Ph.D.
Professor, School of Information Science and Engineering,  
Lanzhou University

Jin Fan, Ph.D.
Professor, Department of Psychology, Queens College,  
The City University of New York

Computational 
psychophysiology
Working at the 
intersection of the 
mind and body, 
psychophysiology 
studies the effects of 
psychological states
on physiological 
processes and 
vice-versa.
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Magnetic resonance 
imaging of mental 
disorders: A multimodal 
approach for psycho-
radiology

Su Lui1, Du Lei1, Weihong Kwuang2, 
Hua Ai3, Feng Bi4, 

Zhongwei Gu3, Qiyong Gong1*

Magnetic resonance imaging (MRI) is an 
emerging and powerful tool for noninvasively examining 
the structure and function of the brains of patients 
with mental disorders. Over the past two decades, 
the number of psychiatric MRI studies has increased 
dramatically, largely due to the significant advances 
in technical and methodological improvements in MRI 
modalities. This has led to a wide range of applications 
for clinically oriented research on mental disorders. 

The development of the multimodal MRI has enabled 
the precise quantification of brain tissue at the structural, 
functional, and molecular levels (1–6). Using high-field 
MRI (i.e., 3.0 Tesla MR), for instance, the structural and 
functional correlates underlying a number of mental 
disorders have been identified. Taking advantage of 
novel approaches and techniques for the acquisition 
and analysis of MRI data, a number of clinical studies 
have revealed imaging biomarkers in populations 
that are at high risk for developing mental disorders 
(7–12). Moreover, such biomarkers for mental disorders 
provide further insight into their underlying pathological 
mechanisms (13–21). The results not only support the 
U.S. National Institute of Mental Health (NIMH)’s recent 
Research Domain Criteria (RDoC) project, which focuses 
on investigating the biological underpinnings of mental 
disorders (22), but also provide a preliminary step toward 
the translational use of high-field MRI for diagnosing, 
predicting, and monitoring a patient’s response to 
treatment.

For example, multimodal MRI neuroimaging of 
treatment-naïve patients with first-episode schizophrenia 
gave us the opportunity to examine fundamental brain 
changes caused by the disease, unrelated to medication 

(13, 23, 24). Both the short-term and long-term effects 
of antipsychotic treatments on a patient’s brain can be 
investigated using a connectivity analysis of resting 
state functional MRI (R-fMRI) data (25, 26). One such 
analysis revealed elevated prefrontal brain connectivity 
in patients with schizophrenia, which appears to be a 
robust biomarker associated with the clinical severity 
of the disorder (26); however, this directly contrasts the 
results of other studies (14, 21, 27). Sun et al. at the West 
China Hospital of Sichuan University recently carried 
out a cross-sectional diffusion tensor imaging study of 
a large cohort of 113 medication-naïve patients with 
first-episode schizophrenia and 110 demographically 
matched healthy control individuals (28). By employing 
a data-driven analysis scheme, they identified two 
subgroups of patients with schizophrenia defined by 
different patterns of white matter abnormalities. The 
group with more severe and widespread white matter 
pathology had more severe negative symptoms, such as 
reduced social engagement and emotional expression, 
and lack of motivation. The findings suggest that 
patterns of white matter abnormalities may provide 
a promising biomarker for subtyping patients with 
schizophrenia for studies investigating the disease’s 
underlying mechanisms, as well as for quantitative 
phenotyping for genetic research.

Furthermore, how the disorder and treatments 
affect different brain regions over the long term are 
key issues under investigation. Zhang and colleagues 
have begun to address these questions with a study 
of 25 chronic patients with untreated schizophrenia 
over a duration of 5 to 47 years who were compared 
with 33 demographically matched (age, sex, and years 
of education) healthy individuals. The group reported 
an increased rate of prefrontal and temporal cortical 
thinning and striatal hypertrophy that may represent key 
changes in brain pathophysiology over the disorder’s 
progression, effects that could not be attributed to 
antipsychotic treatment. No doubt, their findings 
provide important insights into the course and regional 
specificity of progressive brain changes associated with 
schizophrenia in the decades following onset (29).

In summary, efforts by researchers to better 
understand and treat psychiatric disorders have 
been increasing, reflecting the greater awareness 
of mental illness worldwide. This is best exemplified 
by the psychoradiological (i.e., psychiatric imaging) 
research that allows us to obtain various objective 
radiological signs (i.e., imaging biomarkers) of mental 
disorders, which could be used in a clinical context. 
For example, the application of functional imaging 
biomarkers has enabled the quantitative prediction 
of post-traumatic stress disorder (PTSD) symptoms in 
the individual psychopathology of trauma survivors, 
as assessed by a 17-item self-report measure of PTSD 
symptoms (11). In addition to the aforementioned major 
mental illnesses, psychiatric MRI findings and relevant 
methodological developments have been reported for 
other disorders, e.g., obsessive-compulsive disorder 

1Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West 
China Hospital of Sichuan University, Chengdu, China
2Department of Psychiatry, State Key Laboratory of Biotherapy, West China Hospital of 
Sichuan University, Chengdu, China
3National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 
China
4Department of Oncology, State Key Laboratory of Biotherapy, West China Hospital of 
Sichuan University, Sichuan, China
*Corresponding Author: qiyonggong@hmrrc.org.cn

Brain disorders

Computational psychophysiological approaches
can be used to investigate the cognitive 

processes and mechanisms underlying disorders 
that cause mental health issues.

6  ADVANCES IN COMPUTATIONAL PSYCHOPHYSIOLOGY



BRAIN DISORDERS   98  ADVANCES IN COMPUTATIONAL PSYCHOPHYSIOLOGY

and attention deficit hyperactivity disorder (19, 20, 
30–33). The results—especially those using MRI to 
predict the treatment response for individual patients 
with depressive disorder—may represent an initial step 
toward the use of psychoradiological findings to inform 
early clinical diagnoses as well as effective treatment 
for patients with mental disorders (18). Additionally, 
recent advances in MRI tools, such as the development 
of novel imaging probes (34–37), are enabling the 
underlying neuropathology of psychiatric disorders to 
be investigated at the molecular level. In particular, the 
development of novel quantitative MRI methods such 
as macromolecular tissue volume estimation (which is a 
consistent quantitative measure of brain anatomy and 
can be obtained across a range of scanners) (1), and 
magnetic resonance fingerprinting (which permits the 
noninvasive quantification of multiple material or tissue 
properties simultaneously through a new approach to 
data acquisition, post-processing, and visualization) (2), if 
validated clinically, will no doubt expedite the translation 
of psychoradiological discoveries into patient care.
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dementia and impedes the daily life of patients by dis-
rupting their cognition and memory. Clinical symptoms 
include a decline in memory, learning, communication, and 
reasoning. In the Western world, approximately two-thirds 
of patients with dementia who are over 60 years old have 
Alzheimer’s disease (1, 2). At present, it is incurable and ef-
fective treatments are not available (3). 

Mild cognitive impairment (MCI) is an early stage in the 
transition to Alzheimer’s disease, and people with MCI have 
a high risk of acquiring Alzheimer’s disease (4, 5). MCI is 
characterized by mild clinical symptoms involving cognitive 
impairments that are not significant enough to interfere 
with daily activities (4). Neuroimaging technologies can 
provide biomarkers that are potentially useful for providing 
early alerts as to the likelihood of a patient presenting 
with Alzheimer’s disease. They can also provide a means 
for identifying Alzheimer’s disease at the earliest stage 
possible, which is critical for developing treatments that will 
slow its progression.  

Neuroimaging technologies such as structural and 
functional magnetic resonance imaging (MRI) and positron 
emission tomography (PET) (5–7) are increasingly effective 
and precise. Using these techniques, we have carried 
out voxel-based studies and analyzed the surface-based 
morphology and brain networks within regions of interest 
(ROIs) in subjects with MCI and Alzheimer’s disease, and in 
healthy controls. These studies have successfully detected 
abnormalities in brain volume, cerebral cortex thickness, 
structural and functional connectivity, and the topology 
of structural and functional networks (4, 6, 8–10). The 
data are available in the open access Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (http://adni.loni. 
usc.edu/).

In this review, we discuss how neuroimaging 
technologies are being used to understand the effects of 
MCI and Alzheimer’s disease on brain structure, function, 
and metabolism. Such methods could potentially be used 
to identify biomarkers that can help classify and predict the 
stages of these diseases. 

Mesoscale: Voxel-based morphology analysis
Technologies that monitor mesoscale changes in the 

brain can provide data reflecting properties that are 
regionally specific. One such method is voxel-based 
morphology analysis. This technique has been used to 
measure the progression of mesoscale changes in patients 
with MCI and Alzheimer’s disease and has revealed that 
these patients undergo a loss of gray matter volume in 
specific brain regions, including the parahippocampal 
gyrus, hippocampus, left amygdala, and left fusiform 
gyrus (9). These studies have shown that patients with 
Alzheimer’s disease have alterations in the surface 
morphology of the cerebral cortex, loss of gray matter 
volume, atrophy of cortical thickness, and a decline in 
cerebral glucose metabolism (Figure 1) (6–9). 

MRI-based neuroimaging technologies can also be used 
to explore the relationship between brain structure and 
function and to investigate atrophy within particular brain 
regions in patients with MCI and Alzheimer’s disease (11). 
Interestingly, our analysis of surface-based morphology 
using structural MRI data has revealed atrophy in the 
parahippocampal gyrus, a brain region in the cerebral 
cortex known to be influenced by MCI and Alzheimer’s 
disease. Moreover, our longitudinal studies have shown 
that the rate of atrophy in the parahippocampal gyrus 
in patients with amnestic MCI is more pronounced than 
in control patients (Figure 1D) (6). Voxel-based analyses 
of PET data have also indicated that, concordant with 
changes in the morphology of the cerebral cortex, the 
brains of patients with Alzheimer’s disease show reduced 
metabolism in the parahippocampal gyrus (Figure 1C) (7).  

Detection of regional homogeneity (ReHo) and fraction 
amplitude of low-frequency fluctuations (fALFF) represent 
other powerful tools for characterizing properties of 
regional brain activity (Figure 1B) (8). ReHo evaluates 
resting-state brain activity (5), whereas fALFF measures 
the ratio of the fluctuant amplitude in a low-frequency 
band to the fluctuant amplitude in the total frequency 
band (8). A study comparing the ReHo values in subjects 
with Alzheimer’s or MCI with healthy controls showed the 
values were significantly decreased in the patients’ medial 
prefrontal cortex, the bilateral posterior cingulate gyrus/
precuneus, and the left inferior parietal lobule (IPL), and 
were increased in the left IPL (Figure 1A) (5). Additionally, 
subjects with MCI alone had lower fALFF values in the 
postcentral gyrus, the right inferior temporal gyrus, and 
the left inferior occipital gyrus as compared with healthy 
controls (8). 

Macroscale: Brain network visualization 
Macroscale analysis depends on the correlation of 

data from spatially separate brain regions that can be 
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integrated to study whole-brain networks, or the human 
“connectome” (the connection matrix, Figure 2). Brain 
networks can be constructed from neuroimaging data, 
wherein ROIs are defined as “nodes.” ROIs can be created 
by segmenting readily available atlas images (such as 
those from Automated Anatomical Labeling, Brodmann, 
and Harvard-Oxford) or by extracting spatial components 
by independent component analysis [ICA, a multivariate 
and data-driven method extracting independent resting-
state networks (RSNs) from the Blood Oxygen Level 
Dependent (BOLD) time series]. 

We and others have shown that patients with MCI 
and Alzheimer’s disease have abnormalities in specific 
structural and functional brain networks (4, 10). Using 
structural and functional MRI, we have defined several 
common differences between patients with MCI and 
Alzheimer’s in brain covariance networks, as constructed 
by correlations between ROIs. The most significant of 
these common differences is a disruption of relatively 
long-distance connections (>83 mm, the mean physical 
distance between brain regions, Figure 2A and B) (4, 10). 
The disruption of long-distance connections represents 
the loss of global efficiency. However, networks with 
small-world topology—brain networks that are graphically 
represented by high clustering coefficients and low 
characteristic path lengths—have higher efficiency at lower 
connection costs. In such small-world networks, most 
nodes that are not close to one another can be reached 
from every other node by a small number of steps. In 
patients with MCI or Alzheimer’s disease, increases in 
the clustering coefficients and shortest paths have been 

reported. Specifically, in functional and structural networks, 
clustering coefficients were significantly increased among 
Alzheimer’s subjects compared with healthy controls (4, 
12). Clustering coefficients are related to local efficiency. 
Information dissemination and information processing 
may be more efficient in a network with a shorter absolute 
path length and higher global efficiency (4). Furthermore, 
an analysis of voxel-based structural networks showed 
that in subjects with MCI, the clustering coefficient and the 
shortest path length of the cortical network fell between 
the median values of healthy controls and patients with 
Alzheimer’s disease. This data supports the concept 
that MCI is a transition stage from the normal state to 
Alzheimer’s disease (4). Furthermore, the data from these 
voxel-based structural networks are consistent with those 
from cerebral cortex thickness-based networks studies, in 
which increased clustering coefficients and shortest path 
lengths were also reported (13). Reduced efficiency of 
networks was associated with cognitive impairment in the 
Alzheimer’s disease and MCI patient groups. More severe 
forms of Alzheimer’s disease are related to fewer long-
distance connections (10). 

The metric used to measure the importance of a region 
within a brain network is betweenness, a measure of the 
centrality of a node in a graph. The betweenness of a 
node is defined as the number of shortest paths that are 
between any two other nodes and that run through the 
node. Important brain regions are termed hub regions, for 
which betweenness values exceed twice the average of the 
betweenness value of the network. Interestingly, subjects 
with MCI and Alzheimer’s disease show a loss of hub 

regions within the frontal lobe as compared with controls (4). 
Further, ICA, a form of data-driven analysis, has been used 
to define information about RSNs or intrinsic connectivity 
networks (ICNs) (Figure 2D). In subjects with Alzheimer’s 
disease, functional network connectivity (FNC) is significantly 
decreased between the anterior and posterior default mode 
networks and between the visual network and the left front 
parietal network (14).  

In the multiscale analysis of neuroimaging data described 
in this review, some abnormal regions simultaneously 
presented at both the mesoscale and macroscale, including 
the parahippocampal gyrus and the posterior cingulate 
gyrus/precuneus. In patients with MCI and Alzheimer’s 
disease, the morphology, metabolism, and connections 
related to these regions have been found to be damaged, 
reflective of cognitive impairment and memory decline. 
Moreover, the posterior cingulate gyrus/precuneus also 
appear to play an important part in the structural and 
functional networks as shown by these studies. Further 
defining these regions by multiscale analysis, using the 
approaches discussed in this review, will help to elucidate 
the underlying pathology of Alzheimer’s disease.
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Resting State Networks (RSNs) based on independent component analysis in all subjects including NC, amnestic MCI, and Alzheimer’s 
disease. Extracted RSNs included anterior default mode network (aDMN), auditory network (AN), left frontoparietal network (LFP), 
precuneus network (Pcu), posterior default mode network (pDMN), right frontoparietal network (RFP), sensorimotor network (SMN), 
and visual network (VN) (14).

FIGURE 2. Depiction of “connectome” network, based on structural and functional 
MRI, highlighting the differences in small-world properties. (A) Long-distance 
connections in normal controls (NC) as well as patients with mild cognitive 
impairment (MCI), mild Alzheimer’s disease (mAD), or severe Alzheimer’s disease 
(sAD) (10). (B) Differences in interregional connectivity between patients with 
Alzheimer’s or MCI, and NCs: Panel I shows significant changes between the 
NC and Alzheimer’s disease groups; Panel II shows significant changes between 
the NC and MCI groups; Panel III shows significant changes between the MCI 

and Alzheimer’s disease groups (4). (C) 
Construction of structural cortical networks 
in patients with Alzheimer’s disease and 
NCs (13): Panel I shows representating 
cortical thickness maps for a control subject 
(left) and for an Alzheimer’s disease subject 
(right) obtained from structural MRI; Panel II 
shows the cerebral cortex segmented into 
54 cortical areas, each color representing 
an individual region; Panel III shows the 
correlation matrices from calculating the 
partial correlation coefficients between 
regional thickness across subjects within 
the control group (left) and the Alzheimer’s 
disease group (right); Panel IV shows the 
binarized matrices (left for the control 
group and right for the Alzheimer’s disease 
group) by a sparsity threshold of 13%. (D) 

FIGURE 1. Differences in regional 
properties between patients 
with Alzheimer’s disease, mild 
cognitive impairment (MCI), 
and normal controls (NCs). (A) 
Significant differences in regional 
homogeneity in patients with 
Alzheimer’s disease and MCI 
(5). (B) Significant differences 
in fraction amplitude of low-
frequency fluctuations (fALFF) 
between amnestic MCI (aMCI) 
and NC groups (8). (C) Differences 
in metabolism in brains of 
patients with Alzheimer’s disease 
compared to normal controls (7). 
(D) Differences in rate of atrophy 
between aMCI and NC groups (6).
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(C) Individual medical history features2	 (D) Combined motor pattern and medical 
history features

Using motor patterns for 
stroke detection

Yiqiang Chen1*, Hanchao Yu1, 
Chunyan Miao2, Biao Chen3,  

Xiaodong Yang1, Cyril Leung2

Stroke is a leading cause of death and severe 
disability in the elderly, and poses a major challenge for 
public health. In recent years, there has been a rapid 
increase in the number of stroke victims in many coun-
tries, due to the aging population (1, 2). Moreover, stroke 
survivors are at a higher risk of suffering another stroke. 
Indeed, studies report that up to 40% of survivors suffer a 
new stroke within one year of a diagnosed stroke. There-
fore, early detection of stroke in at-risk patients, including 
stroke survivors, is an important health challenge.

Previous studies have shown that the Trail Making 
Test (TMT) is an important means to detect stroke (1, 
3). However, conducting a traditional TMT requires the 
assistance of doctors, which is not always convenient. 
In this paper, we describe an accurate approach for 
automating stroke detection through a computer-based, 
body sensing game-based Trail Making Test (BSG-
TMT), which in theory will allow for timelier intervention 
implementations. Our results demonstrate that the 
accuracy of a stroke diagnosis can be as high as 91% 
using only four selected motor pattern features (4). This 
accuracy can be significantly improved by including 
medical history features. These findings verify clinical 
observations and highlight the importance of using fine 
motor pattern features of the upper limbs and medical 
history features for detecting strokes.

Motor pattern feature selection
As shown in Figure 1, the proposed stroke detection 

framework consists of four steps: (1) data acquisition—
collecting raw motion data using the proposed robust 
fingertip tracking method (5); (2) feature extraction—
extracting the potential motor pattern features related 
to stroke from the raw motion data collected in Step 1 
and identifying the patient’s medical history features; 
(3) feature selection—applying a mutual information-
based feature selection method to obtain the most 
representative features; and (4) classification—validating 
the discrimination ability of the selected features.

In Step 1 of the proposed detection framework, a 
Microsoft Kinect unit is used to collect raw depth sensor 
data while each subject is taking the BSG-TMT (4). The 
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BSG-TMT is designed based on the widely accepted 
clinical TMT. The TMT requires the subject to connect a 
set of N dots, numbered 1, 2, … , N, in a strictly sequential 
order (starting with dot 1) as quickly as possible. In the 
BSG-TMT, the pen and paper used for traditional TMTs 
are replaced by the subject’s fingertip and a computer 
screen, respectively. As illustrated in Figure 1, the 
fingertip is represented by the red bullet symbol and 
the numbered dots are represented by the numbered 
squares. If the subject is currently on dot N and makes a 
mistake by next connecting to a dot other than dot N + 1, 
we say that a connection error has occurred. In this event, 
the subject has to retry until he connects to dot N + 1. The 
test ends when the subject connects to dot N. Because 
it is difficult to identify patients who will suffer a stroke 
in the future, we collected data from stroke patients 
who had been recently discharged from the hospital 
and used the data to approximate the data for potential 
stroke patients. These selected patients are known to 
have a high likelihood of a new stroke occurrence, which 
provides us with a reasonable proxy for at-risk patients.

In Step 2, potential stroke-related motor pattern 
features are extracted from the data collected in Step 
1. These features include the time the subject took 
to complete the BSG-TMT (A-Time); the test accuracy 
(T-Accuracy); the time the subject took to correct a 
connection error (C-Time); the mean (M-R-Length) and 
variance (V-Length) of the N–1 ratios of the fingertip 
movement path length to the straight-line distance 
between two consecutively numbered dots; the mean 
(M-Fingertip) time duration spent by fingertips at the 
dots; and the mean (M-R-Time) and variance (V-Time) 
of the ratios of the time needed to connect two 
consecutively numbered dots to the fingertip movement 
path length between the two dots. Medical history 
features, such as history of strokes, hypertension (HT), 
hyperglycemia (HG), coronary heart disease (CHD), and 
diabetes were also retrieved. In total, 13 features were 
studied.

To determine the most representative features for 
stroke detection, in Step 3 we adopted the mutual 
information-based feature selection method. This 
method automatically measures the importance of the 13 
features, retaining the most representative features and 
discarding unnecessary ones. Initially, we used the finger 
motor pattern features to build the stroke detection 
model and tested the discrimination ability using 10-fold 
cross validation (6). We then ranked the combination 
of features in the order of testing accuracy. For each 
combination, we applied the 10-fold cross validation 
again to get the final testing accuracy and selected the 
most discriminative combination as the final feature 
set. Similarly, we ranked the discrimination ability of the 
medical history features. We added the medical history 
features to the selected feature set one by one until no 
further classification performance improvements could 
be obtained.

In Step 4, the effectiveness of the selected features 
was validated through a recognition test on the subjects. 

      

(A) Individual motor pattern features (B) Combined motor pattern features1

FIGURE 2. 
Results showing 
the accuracy of 
test data when 
selecting for 
representative 
features (4).

FIGURE 1. The proposed stroke detection framework.

1”First Two,” 
“First Three,” etc. 
correspond to eight 
features listed left to 
right in graph (A).
2HG=hyperglycemia; 
HT=hypertension; 
CHD=coronary heart 
disease.
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We employed a single-hidden-layer neural network, 
b-COELM (7), which is very efficient and effective when 
the training set is small (8), to train a binary classifier to 
distinguish stroke patients from the control subjects 
based on the selected features.

Experimental analysis
We designed a study using human subjects to 

demonstrate the effectiveness of the proposed stroke 
detection method. Fifty stroke patients (16 women 
and 34 men, from ages 52 to 81) and 55 healthy elderly 
subjects (25 women and 30 men, from ages 30 to 68) 
were recruited for our experiments. Each subject was 
asked to take the BSG-TMT, and the entire session was 
automatically recorded by the system.

A feature selection experiment was then performed 
on the data. As shown in Figure 2, after seven iterations, 
the four most representative motor pattern features were 
selected, which improved the classification accuracy 
from 74% to 91%. After combining these features 
with the four selected medical features, the accuracy 
improved to nearly 100% (4). Table 1 shows the eight 
selected features. Our results indicate that motor pattern 
features are sufficient to detect stroke with reasonable 
accuracy, and the accuracy can be further improved 
by also considering the subjects’ medical history. The 
experimental results have demonstrated for the first 
time that through combining motor pattern features 

and a patient’s medical history features, a stroke can be 
accurately detected.
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Cognition and behavior

Computational psychophysiological models can 
be used to better understand social behavior 

and how psychophysiological signals are related to 
mental states and cognitive processes.

Category No. Feature name Feature description

Motor pattern 
features

1 A-Time Time the subject takes to complete the BSG-TMT

2 M-Fingertip Mean time that fingertips are on the dots

3 C-Time Time the subject takes to correct a connection error

4 M-R-Time The mean of the ratio for the time needed to connect two consecutively 
numbered dots to the path length taken between the two dots

Medical history 
features

5 HT Whether the subject has hypertension

6 HG Whether the subject has hyperglycemia

7 CHD Whether the subject has coronary heart disease

8 Stroke Whether the subject has previously had a stroke

TABLE 1. Eight most discriminant features for stroke detection.
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The embodied mind: Using 
psychophysiological 
signals to inform brain 
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In the 17th century, the philosopher René Descartes 
famously established the mind–body problem by pro-
posing that individual existence could be affirmed by 
thought (“cogito ergo sum”), but that the embodied self 
could be illusory. In the late 20th century, Descartes’ 
argument was modernized in the form of the “brain in a 
vat” proposition (1), whereby a brain removed from the 
body and sustained on appropriate “life support” was 
hypothesized to still experience consciousness and reca-
pitulate what an embodied brain can do. There is a divi-
sion among scientists and philosophers: Some believe 
that consciousness is mainly driven by events localized in 
the brain (2), and others argue that consciousness must 
be the result of an embodied brain supported by the 
physiological processes of the body (3). Regardless of 
the minimum substrates necessary for consciousness, the 
concept of self relies greatly on the ability of the brain to 
process signals emanating from the body (4). The body 
and brain cannot be separated without loss of meaning-
ful information. Thus, rather than simply considering the 
mind–body or mind–brain, in this review, we consider the 
mind–brain–body context: How do the mind, brain, and 
body interact with each other, and how does this system 
as a whole, process, predict, and act in the world? 

Unfortunately, some research ignores the fact 
that the brain, and therefore the mind, is part of an 
interdependent system: the body. This problem is 
especially evident in functional neuroimaging studies, 
in which signals from the body are usually treated as 
noise. For example, in resting state functional magnetic 
resonance imaging (R-fMRI) research, blood oxygen 
level dependent (BOLD) signals are used as a measure 
of neural activity. However, body-related contributions 
to BOLD signals, such as respiration and heart rate, are 
usually discarded (5). This practice leads to the loss of 
important data. Here we argue that psychophysiological 
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processes, grounded in the autonomic nervous system 
(ANS), are key contributors to cognitive and affective 
functions, and they can serve as indices for psychological 
processes.

We draw an important distinction between 
physiological processes, which relate to biological 
functioning of the body, and psychophysiological 
processes, which relate to the biological underpinnings 
of psychological functions. For example, the heartbeat 
(i.e., the pulsatile rhythm) is physiological, while 
variations in heart rate (i.e., the changing interval 
between heart contractions) are modulated by the ANS, 
the latter of which is influenced by arousal and other 
psychological factors. Psychophysiological signals vary 
dramatically as a function of individual differences in 
autonomic reactivity and baseline activity levels, as well 
as different psychological states (6). In contrast to the 
prevailing view that physiological signals (including their 
psychophysiological components) are merely noise, we 
propose that psychophysiological signals can inform 
the psychological processes underlying the activity 
and functional connectivity observed in brain imaging 
studies. 

R-fMRI is conducted by implementing a resting 
condition, whereby participants are explicitly instructed 
to rest with eyes closed or open, or to fix their gaze on a 
crosshair. Participants are also commonly instructed to 
remain as still as possible and not to think about or do 
anything specific. However, the resting state observed 
in R-fMRI is more akin to an extremely complex task 
condition than a task baseline. Numerous studies have 
shown that during rest, the brain is actually undergoing 
interesting patterns of intrinsic activity and connectivity, 
reflecting spontaneous mentation and other internally 
directed mental operations (7). The brain at rest appears 
to be constantly monitoring and processing stimuli 
from internal and external environments to predict and 
meet environmental demands (8), a process which is 
estimated to account for 95% of the brain’s overall energy 
consumption (9). As the richness of resting state data 
has become apparent, scientists have begun developing 
methods that utilize this information to study the brain’s 
networks (10). For instance, spontaneous, low frequency 
fluctuations of the BOLD signal can be used to define 
resting state networks (RSNs) of spatially distinct brain 
regions exhibiting temporally synchronous oscillations. 

The default mode network (DMN), one of two large 
RSNs, has emerged as consistently deactivated by 
tasks and activated (or less deactivated) during rest 
(11, 12). The DMN comprises primarily the posterior 
cingulate cortex (PCC), ventromedial prefrontal cortex, 
and dorsomedial prefrontal cortex (13). These regions 
exhibit coherent oscillations at rest and an apparent 
“deactivation” during task engagement that is inversely 
correlated with regions of the task-positive network 
(TPN), the second of two large RSNs. The TPN includes 
cortical areas along the intraparietal sulcus, the anterior 
cingulate cortex (ACC), the anterior insular cortex (AIC), 
and the frontal eye fields (12). The DMN appears to be 

involved in emotional processing, self-referential mental 
activity, and recollection of past experiences (8, 13, 14). 
Given the importance of the functions attributed to the 
DMN for understanding the self (i.e., the mind), tools to 
index psychological states (e.g., psychophysiological 
measures) during rest are invaluable. 

Although resting neural activity and connectivity 
is a rich source of information, differentiating signal 
from noise in R-fMRI is challenging (5, 7, 15). Noise 
often arises from the very nature of the methodology 
employed and can include head motion during 
acquisition or anatomical misalignment during analysis. 
The development of methods to maximize the signal 
and minimize the potential effects of noise is thus a 
topic of great interest (5, 7, 15). In many cases, however, 
it is unclear to what extent measurements reflect signal 
or noise. For example, recent work has demonstrated 
that measures of physiology, as well as head motion, 
exhibit patterns similar to those of RSNs (16). Thus a 
fair bit of caution is needed in adjudicating signal and 
noise in studies employing R-fMRI. Some physiological 
measures may not only correlate with a “signal,” but could 
actually contribute to it meaningfully. More specifically, 
psychophysiological signals may be useful indices of 
mental processes during R-fMRI. 

Given no specific task manipulations during R-fMRI, it 
is difficult to understand the psychological implications 
of neural activity and connectivity. As such, to gain 
further insight into the state of the mind during rest, a 
thorough understanding of the brain–body interaction 
is required. The central nervous system, especially the 
brain, interacts with the body through the peripheral 
nervous system. The peripheral nervous system is 
further divided into the somatic and autonomic nervous 
systems, which interact with the external and internal 
environments, respectively. The primary role of the 
somatic nervous system is to coordinate the action of 
the skeletal muscles, thus alterations to this system can 
dramatically impact RSNs (17). Here we focus on ANS 
signals because they are easily measured in human 
populations and can index psychological processes. The 
sympathetic and parasympathetic branches of the ANS 
regulate internal physiology in a hierarchical manner, 
spanning the levels of the spinal cord, brainstem, and 
cerebral cortex (18, 19). The ANS provides an essential, 
reciprocal link between the brain and body. Moreover, 
the ANS regulates physiological reflexes, maintaining 
homeostasis in response to environmental demands. It 
also operates centrally to integrate homeostatic needs 
with the modulations necessary to support physical, 
social, emotional, and cognitive functions (18, 19), 
thereby creating an intimate interaction among the 
autonomic activity governing the body, the processing of 
information in the brain, and the psychological context of 
the mind (19). 

Whereas psychophysiological indices are increasingly 
used in analyses alongside task-based fMRI, there is a 
dearth of such inclusion in R-fMRI, where these indices 
may actually be most informative. An illustrative example 

of the use of psychophysiological signals to understand 
R-fMRI activity and connectivity patterns is our study 
examining the associations between nonspecific (nontask 
related) skin conductance responses (SCRs, a sensitive 
index of ANS activity) and brain activity and connectivity 
during rest (20). Our results have demonstrated that SCRs 
are associated with activation of the TPN (especially AIC 
and ACC) and deactivation of the DMN (especially PCC 
and precuneus). The coherence within the DMN and the 
magnitude of the anti-correlation between the DMN 
and TPN was modulated by SCRs, such that they both 
were enhanced by the psychological context that the 
SCRs indexed. These findings suggest that the pattern of 
activity and connectivity within and between the DMN 
and TPN may be driven by autonomic activity, which 
reflects autonomic arousal and potential psychological 
processes during rest. These results may provide an 
important framework for understanding mental states 
and operations during rest. 

The need to understand differences in the mental 
states of individuals during rest is particularly 
pronounced for group comparisons. Given evidence of 
altered ANS functioning, along with related differences 
in mental states across many forms of psychopathology, 
we have found that psychophysiological differences 
during rest may partly explain the observed differences 
in RSNs between clinical populations and controls. 
Namely, recent work from our group has demonstrated 
differences between individuals with autism spectrum 
disorder (ASD) and typically developing controls 
in ANS activity and its relation to brain activity and 
connectivity. Individuals with ASD exhibited reduced 
ANS activity, as indicated by a reduction in the number 
of nonspecific SCRs, along with decreased correlations 
of SCRs with brain regions reflecting autonomic signal 
processing (e.g., thalamus, dorsal ACC, supplementary 
motor area, AIC) and self-referential processing (e.g., 
medial prefrontal cortex). Importantly, reduced DMN 
connectivity in ASD was associated with less modulation 
by ANS activity (21). Therefore, this study provides 
evidence that differences in RSN connectivity between 
patient populations and controls may be related to 
differences in psychophysiological activity.  

The data we have discussed in this review suggest 
that the mind, brain, and body comprise a dynamic 
system that is constantly active and interactive. Thus, 
whereas physiological signals are commonly removed 
in R-fMRI studies and referred to as “noise,” the 
psychophysiological aspects comprising data on bodily 
and psychological states are in fact critical. This body 
of work suggests that examining psychophysiological 
signals can provide important clues to the function of the 
mind and brain during rest. 
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The predictive mapping 
approach in neuroimaging

Choong-Wan Woo and Tor D. Wager*

For the past 20 years, neuroimaging techniques have 
transformed how we study psychology and medicine. 
Data from neuroimaging can constrain psychological 
theories, resolve some theoretical debates, and be used 
to develop new hypotheses about human cognition and 
emotions by providing a grounding in neurophysiology 
(1). In medicine, neuroimaging provides promising 
measures that can serve as biomarkers for brain-related 
disorders, such as psychiatric and neurologic disorders (2, 
3). Neuroimaging can also connect psychology to biology 
and medicine, which can help researchers understand how 
the mind and the body interact and thereby treat medical 
conditions more effectively (for example, understanding 
the placebo effect) (4).

Despite these promises, neuroimaging has not followed 
the quick and easy path to success that was initially 
envisioned. One important reason is that too little effort 
has gone into developing neuroimaging markers that are 
sensitive and specific to particular mental processes or 
health-related outcomes and can be prospectively applied 
to new data. The dominant paradigm in neuroimaging has 
focused on brain “maps,” not markers. Brain maps identify 
anatomical regions associated with particular mental 
processes. This paradigm does not adequately address 
the many-to-many relationships between brain regions 
and mental processes: One brain region can be involved 
in multiple processes, and one process can be distributed 
across many regions. Thus, we cannot make inferences 
about which mental process is engaged based on brain 
maps. Markers, by contrast, are multivariate patterns of 
brain activity optimized to be sensitive and specific to a 
particular type of mental process. Without markers, the 
inferences we can make about brain representations are 
fundamentally limited (5).  

Do we really have neuroimaging markers?
It might seem that neuroimaging markers for mental 

processes already exist, but in fact, we have been using 
neuroimaging findings as brain markers without properly 
assessing their sensitivity and specificity. For example, 
amygdala activity has often been used as a brain marker 
for negative emotion. However, the amygdala is a large 
anatomical structure comprising heterogeneous neuronal 
populations that encode various physical and mental 
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events (6). Therefore, averaged functional brain activity 
within this region is not very useful as a brain marker 
because of its low specificity (7).  

In order to be considered as a marker, the brain 
measure used should show high sensitivity and specificity 
to the mental event or process of interest. Sensitivity 
accounts for whether a test—in this case, a brain marker—
shows positive results when a target psychological or 
behavioral process is engaged, while specificity describes 
whether the test shows positive results that are exclusive 
to the target process being engaged. Sensitivity and 
specificity can tell us the diagnostic performance of 
the brain measure in question and enable us to make 
inferences or predictions about mental processes or 
outcomes of interest.

Traditional brain mapping approaches
Traditional brain mapping approaches—often called 

“mass-univariate analysis” or “statistical parametric 
mapping”—have been extremely useful in the development 
of neuroimaging. However, these approaches are of 
little help in identifying and utilizing brain markers with 
established sensitivity and specificity. The main goal of the 
traditional approach is to map different mental functions 
onto specific brain regions to localize brain functions. 
As Figure 1A demonstrates, in this framework, tasks or 
conditions are independent variables, and each voxel’s 
fMRI signal becomes a dependent variable. The most 

important question 
answered by the 
traditional approach 
is whether there is an 
effect in each voxel or 
region.

This traditional 
approach has, at 
best, low sensitivity 
to the effects of task 
conditions because it 
assumes independence 
among voxels or 
regions. However, 
psychological and 
behavioral processes 
and related outcomes 
result from integrated 
circuit dynamics. 
Thus, the effects of 
task conditions—and 
the relationships 
between brain activity 
and behavioral/
psychological 
outcomes—are likely 
to be distributed 
across brain regions 
and voxels. Analyses 
that consider only 
information in a 

single voxel or region, as the mass-univariate approach 
does, are unlikely to capture the full effects of tasks. 
In addition, the univariate approach involves a large 
number of statistical tests and requires a correction for 
multiple comparisons (8). The correction for multiple 
tests focuses on controlling false positives and in turn 
increases false negatives, which results in low sensitivity 
(8). With low sensitivity, many of the voxels activated in 
relation to a task or outcome will be missed, providing a 
poor assessment of the pattern across the brain. This, in 
turn, undermines efforts to establish replicability across 
studies (9, 10). Furthermore, as illustrated in Figure 2, 
traditional brain mapping has a limited ability to detect 
the unique relationships between mental functions and 
brain regions, which could undermine the specificity of 
the resulting brain maps.

Developing neuroimaging markers: 
The predictive mapping approach

The predictive mapping approach can resolve the 
issues described above and provide neuroimaging 
markers with quantitatively characterized measures of 
diagnostic performance. Predictive mapping aims to 
develop multivariate, systems-level predictive models 
(or decoding models) that are sensitive and specific 
to particular outcomes of interest (see, for example, 
11). As Figure 1B shows, one of the main features that 
distinguishes predictive mapping from traditional 

      
FIGURE 1. 
Traditional 
versus predictive 
mapping. (A) 
Traditional mapping 
approaches 
(including univariate 
analysis) aim to 
obtain the functional 
architecture of the 
brain by localizing 
effects in the brain. 
This approach 
often entails low 
sensitivity and 
specificity. (B) 
The predictive 
mapping approach 
aims to develop 
a multivariate, brain-
wide predictive
(decoding) model 
that is sensitive 
and specific to the 
outcome of interest. 
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approaches is that the assignment of independent and 
dependent variables is reversed.

The predictive mapping approach helps to solve the 
low sensitivity and specificity problem of traditional 
mapping in several ways.  First, it can identify voxels 
that have selective relationships with the outcome (see 
Figure 2). Second, it uses distributed signals across many 
voxels without requiring thresholding and correction 
for multiple comparisons. Third, it is sensitive to 
information at multiple spatial scales, including large-
scale information distributed across multiple systems 
and mesoscale information below the resolution of 
the imaging itself (so-called fMRI hyperacuity) (12). 
Assessing multivariate patterns rather than individual 
voxels is critical if information about outcomes is 
encoded in neuronal population codes (13). Furthermore, 
assessing large-scale patterns across systems is 
critical if mental states are encoded across systems 
(14). A related approach, called information-based 
mapping (15), also uses multivariate patterns to predict 
outcomes. However, it still focuses on local effects 
(using searchlights, or spatial moving windows), and 
thus is subject to limited sensitivity and massive multiple 
comparisons. In contrast, the predictive mapping 

FIGURE 2. Benefits of predictive mapping. There are a number of scenarios under which predictive mapping yields higher power and 
more accurate representation of brain-outcome relationships than traditional mapping. We illustrate one such scenario here, in which 
there is a direct relationship between Voxel 1 and the outcome (mental process X), and a correlation between Voxel 1 and Voxel 2 that 
reflects a common source of noise unrelated to the outcome. In the center top panel, univariate mapping may identify significant effects 
of both voxels, as it cannot separate regions with indirect connections to X from those that have more direct relationships. The predictive 
mapping approach controls for Voxel 1 when assessing the effects of Voxel 2, and so will not spuriously identify Voxel 2 as significant. 
In addition, controlling for Voxel 2 can remove some of the noise in Voxel 1, which may otherwise mask the relationship between Voxel 
1 and X and prevent Voxel 1 from reaching significance (center bottom panel).  For both reasons, under this scenario, the predictive 
mapping approach has a greater chance of identifying true brain-outcome relationships.

to flexibility in how researchers identify what counts 
as an a priori hypothesis and, in turn, increases in false 
positive results and reduced specificity (19). For example, 
“amygdala activity” does not provide a reproducible 
definition of precisely (a) which voxels in the amygdala 
should be activated (there are typically hundreds); and (b) 
the relative expected intensity of activity across each voxel. 
Any significant result anywhere in the amygdala can count 
as amygdala activation, and this flexibility leads to spurious 
findings. In contrast, the predictive mapping approach 
can minimize biases in measuring, testing, and replicating 
effects in new individuals and studies through predictive 
models defined by precise patterns of brain activity, which 
can provide a priori predictions and testing procedures.  

Precisely defined predictive models (based on 
multivariate patterns of neuroimaging data) provide 
several advantages for basic and translational research. 
First, hypotheses are precisely specified in terms of 
spatial patterns, and responses in these patterns are 
falsifiable and readily testable, providing a foundation 
for strong inference (20, 21). Second, precisely specified 
models are research products that can be shared 
and tested across laboratories, enabling a cumulative 
understanding of their properties across test conditions 
and study populations. Third, some predictive models can 
be prospectively applied to new individual participants, 
which is critical for clinical and legal applications. Fourth, 
well-defined predictive models can serve as a means of 
bringing together basic and clinical research, as diverse 
research groups can communicate with each other 
through tests of predictive models, facilitating translation 
of findings from one setting (e.g., basic research) into new 
contexts (e.g., clinical assessment).

Conclusions
Recent advances have provided promise and hope 

that we can use neuroimaging to better understand 
the human mind, including the neurophysiology that 
underlies behavior and brain-related illnesses. However, 
a wide gap still exists between neuroimaging data and 
the mental processes we want to measure. Part of the 
problem is that we do not have neuroimaging markers 
that are sensitive and specific enough to accurately 
indicate when a particular class of mental process is 
engaged. The predictive mapping approach we outline 
here can be used to develop neuroimaging markers 
that have better sensitivity and specificity compared 
to the traditional univariate mapping approach. The 
predictive mapping approach can also provide precisely 
defined predictive models that can be prospectively 
tested in new individuals and studies, and thereby turn 
the predictive models into research products and/or 
clinical tools. This characteristic can allow neuroimaging 
markers to be easily accessed and tested by other 
researchers and laboratories, promoting replicability 
and facilitating translation from laboratory to clinic. All 
together, the predictive mapping approach has the 
potential to facilitate neuroimaging marker discovery and 
validation for both basic and clinical science.
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approach focuses on developing one unified predictive 
model based on brain-wide patterns of brain activity. 

In the predictive mapping approach, machine learning 
techniques become crucial because analyses based on 
large-scale population codes are subject to the high-
dimensionality problem. High-dimensional data, in which 
there are  many more predictors than observations 
(           ; often called the “curse of dimensionality”), causes 
problems with model optimization because the parameter 
space is underconstrained by the data (16). Some machine 
learning algorithms, such as support vector machines 
and regularized regression, can provide stable prediction 
models even for the high-dimensional data with a 
guarantee of good generalization capacity (17, 18). 

Precisely defined model and prospective testing: 
benefits for translational research

In addition to benefits in sensitivity and specificity, 
the predictive mapping approach can provide precisely 
defined models that can be prospectively tested on new 
datasets.

In traditional mapping approaches, replication and 
hypothesis testing depends heavily on anatomical 
definitions that are often heuristic and ambiguous, leading 
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Computational models of 
implicit sequence learning: 
Distinguishing abstract 
processes from chunking 
processes

Qiufang Fu1, Jianyong Wang2, 
Lei Zhang2, Zhang Yi2, Xiaolan Fu1*

Implicit learning refers to all unintentional learning, 
in which knowledge of the structure of an environment 
is incidentally acquired (1, 2). Implicit learning produces 
a tacit knowledge base, which can be acquired inde-
pendently of intentional efforts to learn and can be 
transferred implicitly through novel circumstances (3, 
4). However, despite decades of research, it remains 
controversial whether abstract knowledge can be ac-
quired through implicit learning. An abstractionist view 
of knowledge acquisition assumes that it can be uncon-
sciously received and is “deep, abstract, and representa-
tive of the structure inherent in the underlying invariance 
patterns of the stimulus environment” (5). Much of the 
evidence supporting the abstractionist view comes 
from artificial grammar learning tasks (6). In contrast, 
the nonabstractionist view assumes that implicit learn-
ing is based on storing memories in specific exemplars, 
chunks, or fragmentary sequences (7). Recent studies 
on sequence learning seem to support the latter view (2, 
8–10).

Chunking and abstract processes in implicit 
sequence learning

Sequence learning is one of the most widely used 
implicit learning tasks, in which a stimulus appears at 
one of four locations and subjects are asked to respond 
to the stimulus location. Recently, studies investigating 
sequence learning have adopted two sequences, namely 
SOC1 (3-4-2-3-1-2-1-4-3-2-4-1) and SOC2 (3-4-1-2-4-3-1-
4-2-1-3-2), that consist exclusively of so-called second-
order conditional (SOC) transitions, in which each 
location is determined by the previous two. When the 
stimulus location follows the order of one SOC sequence 
(called the training sequence) but rarely switches to the 
order of the other SOC sequence (the transfer sequence), 
subjects respond more quickly to the training sequence 
than the transfer sequence, indicative of learning (9–12). 
Because the only difference between the two sequences 

is in their SOC structure (e.g., transition 3–4 was followed 
by a 2 in SOC1, but by a 1 in SOC2), the learning effect 
indicates that subjects have acquired chunk knowledge, 
i.e., a collection of information stored and retrieved as 
a unit. 

To address whether abstract knowledge can be 
acquired during sequence learning, Goschke and Bolte 
(13) asked subjects to name the everyday objects shown 
in line drawings from one of four (semantic) categories. 
The objects were presented in a random order, but the 
categories followed a repeating sequence. This study 
found that the reaction times (RTs) slowed when the 
repeating category sequence changed to a random 
category sequence; however, when participants were 
asked to verbally articulate the repeating category 
sequence, they performed no better than chance. These 
results provided convincing evidence that abstract 
knowledge about the deep structure underlying a 
sequence of specific stimuli can be acquired through 
implicit learning.

If both chunk and abstract knowledge can be acquired 
implicitly during sequence learning, one could argue that 
test subjects should be acquiring abstract knowledge 
during the sequence learning of the SOC structures. 
Indeed, using SOCs as learning materials, it has been 
found that subjects can acquire two types of knowledge 
during implicit sequence learning: (1) knowledge relevant 
to being able to distinguish between the training and 
the transfer SOC sequences, i.e., concrete triplets or 
chunks; and (2) knowledge about properties common 
to both the training and transfer SOC sequences, i.e., 
abstract structures (2). Moreover, when including yet 
another (deviant) sequence that was different in structure 
from both the training and transfer sequences, but was 
presented with a low probability of presentation (same as 
the transfer sequence), we found that RTs to the transfer 
sequence were much faster than they were to the deviant 
sequence, confirming that both chunk and abstract 
knowledge is acquired during implicit sequence learning 
tasks (14).

Computational models of implicit sequence 
learning 

To elucidate the type of knowledge gained during an 
implicit sequence learning task, researchers have used 
various computational models. The simple recurrent 
network (SRN) is one of the most widely used models 
of implicit learning. It is trained to use the current 
stimulus to predict the next stimulus, utilizing a so-
called backpropagation algorithm (15–18). To make the 
prediction possible, the model is set up as a three-layer 
feedforward network that includes context units used 
to copy the network’s pattern of activity elicited by the 
stimulus over the hidden layer each time the stimulus is 
presented (see Figure 1). Information processing in the 
SRN can be formulated as follows:1State Key Laboratory of Brain and Cognitive Sciences, Institute of Psychology, Chinese 

Academy of Sciences, Beijing, China
2Machine Intelligence Laboratory, College of Computer Science, Sichuan University, 
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where ao, ah, as, and ai  refer to the activation of the 
output layer, hidden layer, context units, and input 
layer, respectively; Wh, Wi, and Ws refer to the weight 
connections between different layers or units; and f 
refers to the activation function. Through training, the 
SRN can learn to improve prediction accuracy by refining 
the connection weights between the hidden layer and 
the input or output layer, and long-term knowledge is 
represented by the weights’ value (18). Thus, without any 
further assumptions, the SRN captures two important 
characteristics of implicit learning: (1) that implicit learning 
is incidental and mandatory; and (2) that the resulting 
knowledge is unconscious or difficult to articulate. 

To simulate RT performance in sequence learning, it is 
assumed that the normalized activity of the output layer is 
inversely proportional to RT (15). This assumption allows 
the SRN model to simulate most of the results seen in 
sequence learning experiments (16, 18, 19). To simulate 
how abstract sequential structures can be acquired in 
implicit sequence learning tasks, the SRN was assumed to 
be sensitive to the gap between successive occurrences 
of the same stimulus (20), an example of structure 
information. However, abstract structure can be defined 

      

FIGURE 2. Schematic diagram of the dual simple recurrent network 
(DSRN). The chunking SRN encodes specific stimuli and learns to 
predict the next specific stimulus, whereas the abstract SRN encodes 
the abstract properties of the current stimulus and learns to predict the 
abstract properties of the next stimulus. The response layer is designed 
to integrate different predictions in order to make a final prediction.

FIGURE 1. Schematic diagram of the simple 
recurrent network (SRN). The weight connections 
between different layers are denoted as Wi, 
Wh, and Ws. The SRN is trained to utilize the 
current stimulus to predict the next stimulus 
using a backpropagation algorithm. To make the 
prediction possible, the context units continuously 
record a copy of the network’s pattern of activity 
elicited by the stimulus over the hidden layer.

{ 

	 aO(t) = f(Whah(t)) 
ah(t) = f (W iai(t — 1) = WSaS(t)),
	 aS(t) = ah(t —1)

 by the relationship between repeating sequence elements 
(21). To better simulate how different types of knowledge 
are gained during sequence learning, a dual process 
model was introduced in which surface learning or chunk 
learning was based on an SRN model, and abstract 
learning depended on a short-term memory mechanism 
that encoded previous responses and a recognition 
mechanism that compared the current response to the 
stored short-term memory responses to detect any 
repeated elements (21). This dual process model has 
clearly demonstrated that surface structure can be learned 
implicitly, whereas abstract structure can also be learned, 
but only under explicit conditions. Nonetheless, this 
model cannot account for the evidence of implicit abstract 
learning found in other studies (2, 13). 

To address this discrepancy, we proposed a dual 
simple recurrent network (DSRN) model (see Figure 2), in 
which surface learning and abstract learning are based 
on different SRN models. The chunking SRN encodes the 
specific stimulus and learns to predict the next specific 
stimulus. The abstract SRN encodes the abstract property 
of the current stimulus and learns to predict the abstract 
property of the next stimulus. To integrate the different 
predictions of the two SRNs, we added a response layer 
that produces the final prediction of the next stimulus 
using the equation:                                             , where 
                , and 	   refer to the activation of the response 
layer, prediction layer of the chunking SRN, and prediction 
layer of the abstract SRN, respectively, and  refers to the 
prediction weight of the chunking SRN. After the DSRN 
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Self-regulation of aversive 
emotion: A dynamic causal 
model 

Ning Zhong1,3,4,5†*, Yang Yang1,4,5†, 
Kazuyuki Imamura2, Shengfu Lu3,4,5, 

Mi Li3,4,5, Haiyan Zhou3,4,5,  
Gang Wang6,7, Kuncheng Li5,8

The ability of humans to regulate emotion is a fun-
damental prerequisite for maintaining intact social lives 
that impacts both emotional and mental well-being (1). 
Generally, emotion regulation includes processes that 
amplify, attenuate, or maintain an emotion (2). An inability 
to effectively down-regulate (attenuate) negative emotions 
when they arise distinguishes those who are vulnerable to 
emotional disorders—such as anxiety disorders and major 
depressive disorder (MDD)—from emotionally healthy 
individuals, and this is thought to underlie the pathogen-
esis of mental disorders (3). Therefore, unraveling the 
neural mechanisms underlying emotion regulation is key 
to furthering our understanding of emotional disorders. 
Theoretically, one important dimension of emotion regula-
tion is the discrepancy between conscious regulation (i.e., 
guided by explicit intentions and accessible to one’s own 
awareness) and automatic regulation (i.e., guided by im-
plicit intentions or outside one’s awareness) (1). Although 
both forms of regulation are interesting and important, 
there is a lack of neuroscience-based studies addressing 
the latter issue (4). That is, studies have shown that when 
subjects are faced with a specific task requirement (e.g., 
“imagine that the crying woman in the picture is an actress 
who is performing”), they use top-down cognitive regula-
tion of their emotion that recruits the cognitive system 
(e.g., attention or memory). The instruction provided along 
with the image actively elicits emotion regulation and 
changes the way the subject appraises the meaning of an 
emotional stimulus. This task is followed by what we term 
a “modulated recovery period” from the emotional re-
sponse since the instruction necessitates that the subjects 
change their emotion when confronted with the emotional 
stimulus. If no such instruction is provided, the subsequent 
recovery is instead regarded as a natural recovery period. 
As our recent study on the self-regulation of aversive emo-

tion shows, there is a lack of research regarding whether 
cognitive regulation is required during natural recovery 
(5). Therefore, we have reanalyzed the data from this study 
on the self-regulation of aversive emotion to also inves-
tigate the emotion regulation processes underlying the 
natural recovery period. Moreover, we have proposed a 
model to explain the dynamic neural activity involved in 
self-regulating aversive emotion. Here, we discuss both 
our data reanalysis and our new model.  

Self-regulation of aversive emotion
In our recent study investigating brain responses to 

aversive stimuli using functional magnetic resonance 
imaging (fMRI), 20 healthy volunteers were recruited to 
investigate the discomfort induced by viewing aversive 
pictures (those with fear-inducing or disgusting content) 
and the emotional self-regulation during the natural 
recovery period (resting state) that followed (5). We 
collected multiple measurements from the sample group, 
including a pretest that displayed only neutral pictures 
without inducing emotion and a posttest that displayed 
only aversive pictures that aroused aversive emotions. 
For each test, volunteers were asked to concentrate on 
15 pictures sequentially for 1 minute (4 seconds per 
picture) and then rest (recover) for 4 minutes. The two 
tests were separated by a 15-minute interval. Using fMRI 
to measure each subject’s brain activity, the blood oxygen 
level dependent (BOLD) responses were compared 
for each condition, either aversive or neutral pictures. 
The data indicated that the subjects’ brain activity was 
significantly greater during the posttest compared 
with the pretest. This result was observed for both the 
emotional responses to aversive stimuli (corresponding 
to the 1-minute period of picture viewing) and the self-
recovery period (corresponding to the 4-minute period 
of rest). In addition, we observed increased activation 
in the striatal region when subjects were viewing the 
aversive pictures, suggesting that this region plays a 
functional role in generating emotions (7). This activation 
continued even after the display of the aversive pictures 
had ceased, suggesting this subcortical region is also used 
for bottom-up regulation of emotion and is driven by the 
direct perception of aversive stimuli and spontaneous 
suppression (holding back) of emotion. The striatum has 
been linked to this type of emotion suppression because 
it has been shown to play a role in anticipating aversive 
stimuli (8) and manual response inhibition (constraining 
body movement) (9). Furthermore, the data also indicated 
that the aversive stimuli condition induced significantly 
increased activation in the dorsolateral prefrontal cortex 
(DLPFC) during the late period of rest. The DLPFC 
controls higher cognitive functioning along with several 
other regions within the executive control network (6). 
These data suggest that top-down regulation—initiated 
from higher cognitive brain regions—is also involved in 
emotional self-recovery. Finally, we observed a gradual 
decrease in the BOLD signal in the striatum as well as a 
continuous increase in the BOLD signal in the DLPFC. 
Taken together, it seems reasonable to assume that the 
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has made its prediction, the backpropagation processing 
provides a learning opportunity for each SRN. Following 
training, the DSRN responds to the training sequence 
more quickly than to the transfer or other sequences. 

To simulate generation performance in an inclusion 
test, in which subjects were asked to generate a sequence 
that resembles the training sequence as much as possible, 
and in an exclusion test, in which subjects were asked to 
avoid generating the training sequence, we assumed that 
(1) each unit in the response layer has an attribute called 
“activation state” to indicate whether it is activated or not 
and this activation state can be calculated by the equation                    	
	           ,where    is a constant parameter; and (2) the 
activation state of each response unit in the response layer 
determines which response is made. Because there are 36 
concrete triplets for surface learning, but only two abstract 
structures for abstract learning, abstract structures will be 
learned much faster and more accurately and will more 
quickly come to consciousness. Because conscious and 
unconscious knowledge play different roles in generating 
the training sequence in the inclusion and exclusion tests, 
we can manipulate the prediction weight of each SRN to 
simulate generation performance of the training sequence 
in the inclusion and exclusion tests. 

Compared with previous computational models of 
implicit sequence learning, the DSRN model has two 
advantages. First, the DSRN can successfully model how 
surface and abstract structures are acquired implicitly 
in different sequence learning situations. This not only 
extends the SRN’s ability to learn, but also demonstrates 
that surface learning and abstract learning may use similar 
computational principles. Second, the separation of 
surface and abstract SRNs allows us to investigate whether 
the degree of abstraction determines the conscious status 
of the acquired knowledge—an area in which there has 
been an ongoing debate. Nonetheless, it has its own 
disadvantages. No guidelines have been set up with 
respect to how to determine the value of free parameters 
(e.g., learning rate, number of layers, and number of 
units in each layer) by users of the DSRN; rather, these 
need to be individually determined. Further, although this 
model provides a new way to simulate RTs and generation 
performance of the training sequence, it still has difficulty 
in clearly distinguishing implicit learning tasks from explicit 
testing tasks, a calculation that remains too complex for 
our present models. 
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subjects’ strategies for self-regulating emotion transitioned 
from attempting to suppress the emotion to a cognitive 
control strategy. Therefore, we propose that the subjects’ 
brain activity went through three states: perceiving the 
emotional stimuli, suppressing the induced emotions, and 
regulating the emotions through cognitive control. These 
data demonstrate that both bottom-up and top-down 
controls are involved in emotional self-recovery. 

Dynamic causal modeling of emotion regulation
Because conventional methods for analyzing fMRI 

data have limited ability to show causal relationships 
between brain functions, the results of our previous 
study were insufficient to thoroughly interpret how the 
independent bottom-up and top-down systems interact 
at the cellular level. To investigate this further, the data 
from the same group of 20 volunteers were reanalyzed for 
the time period during which subjects were viewing the 
pictures using dynamic causal modeling (DCM) (10). This 
approach for analyzing effective connectivity can show 
the transmission of neural signals between brain regions 
(which reflects how a former cognitive activity influences 
a latter cognitive activity, i.e., causality between cognitive 
processes), depict the influence that one neuronal system 
exerts on another, and evaluate how well a particular 
model explains the observed data. 

Similar to the results from Yang et al. (5), the results of 
this analysis demonstrate that there were shifts in how 
the brain controls emotion when viewing the pictures 
(Figure 1). These shifts corresponded to three states: 
the initial response to the aversive pictures (perception 
and encoding of stimuli), which activated the visual and 
encoding regions; response suppression (inhibition), 
which induced significant activation in the ventral striatum 
(VS) and supplementary motor area (SMA); and response 
modulation, which led to significant activation in the 
DLPFC [P < 0.05, false discovery rate (FDR) corrected, 
for each state when compared with neutral images]. The 
dynamic causal connections (or directional interactions) 

were modeled for the four regions that were activated 
during the specific time intervals of the three states: 
ventrolateral prefrontal cortex (VLPFC), dorsal part of 
anterior cingulate cortex (dACC), VS, and DLPFC (1, 4). 
Because the precise function of these four regions and 
their interactions are still being debated (e.g., whether the 
VLPFC is involved in the generation of emotion or whether 
the DLPFC modulates the VS in a direct way), 50 models 
were chosen to cover each of the hypotheses, and the 
optimal model that represented the best fit to the data was 
identified using Bayesian model selection (BMS) (11). 

As a result, bidirectional endogenous connections 
were identified between the pairs of VS and VLPFC, VS 
and dACC, VS and DLPFC, VLPFC and DLPFC, and dACC 
and DLPFC (Figure 2A). The overarching idea is that the 
prefrontal and cingulate systems support the control 
processes that modulate activity in subcortical systems, 
which generate emotional responses (4). Although the 
amygdala is more commonly reported to be activated 
during emotion generation than the VS, our study did not 
find significant activation in this region. However, the data 
verified our previous results in which the VS was associated 
with both emotion generation and bottom-up regulation 
via suppression. Moreover, emotion-inducing stimuli 
were only associated with the VS and not the VLPFC, 
which refutes the possibility that the VLPFC is engaged 
when generating emotions (1). The stimuli also led to a 
self-connection within the VS (Figure 2A), which causes 
a self-inhibition that prevents uncontrolled outbursts of 
neural activity. However, the aversive emotion induced 
by viewing pictures in our study was intense enough to 
override this inhibition and enabled the activation of the 
DLPFC via two indirect paths: the dACC and the VLPFC. 
The DLPFC exerted modulatory effects on the VS directly, 
which down-regulated the subjects’ emotional responses. 
During indirect transmission of emotional signals from VS 
to DLPFC, the VLPFC and dACC are involved in evaluating 
the positive or negative valence of afferent signals and 
monitoring conflicts between the responses to the 

      
FIGURE 1. Functional magnetic reso-
nance imaging (fMRI) images of subjects 
viewing aversive pictures compared with 
neutral pictures. Aversive stimuli induced 
significant brain activation that differed 
across regions depending upon three 
states: perception, inhibition, and modula-
tion. (A) Significant activation at (0, –9, 
2/52), displayed in Montreal Neurological 
Institute (MNI) coordinates, is shown in 
sagittal, coronal, and axial planes. Activa-
tion in each region reached statistical 
significance of P < 0.05 [false discovery 
rate (FDR), corrected], cluster size k > 10 
voxels. (B) The brain regions where signifi-
cant activation occurred during the three 
states are depicted on the surface of the 
brain in different colors.

overriding emotion and initial inhibition, respectively (4, 12). 
The DLPFC has been reported to be related to higher order 
(or “cold”) regulatory processes, which are reliant on only 
attention and memory, and are free of affective processing 
(13). Note that these processes are quite possibly utilized 
spontaneously during the emotional self-regulation.  

Self-regulation models for aversive emotion
Based on the shifts in brain activity across perception, 

inhibition, and modulation to control emotion and the 
optimal dynamic causal model described above, we 
have proposed that a frontostriatal circuit underlies a 
dual regulation model for emotional self-recovery (Figure 
2B), in which both bottom-up and top-down regulation 
are involved. Bottom-up regulation initially attenuates 
emotions with negative valence (such as that induced by 
aversive stimuli) via the VS serving as an “emotion buffer” 
that enables the brain to endure the emotions by exerting 
a certain level of inhibition, until the emotions are defused 
over time. For intense emotions that exceed the magnitude 
that the VS can bear, the VS will recruit help from the DLPFC 
by transmitting signals about the intense emotions along 
indirect pathways via the VLPFC and dACC. This enables a 
top-down cognitive regulation by the DLPFC that directly 
modulates the VS (4). 

Conclusion
Taken together, our data demonstrate that the brain 

recruits cognitive regulation during emotional self-recovery 
to decrease emotional-related discomfort after receiving 
aversive stimuli. Furthermore, our findings suggest that 
both VS-centric bottom-up and DLPFC-centric top-down 
regulation are recruited for self-regulating emotions 
with negative valence. The DLPFC exerts a modulatory 
effect on the VS only when the VS fails to suppress the 
induced emotions by self-inhibition. The underlying 
neuronal responses of this dual regulatory model may 

be attributed to the interaction between glutamatergic 
excitation and GABAergic inhibition [gamma-aminobutyric 
acid (GABA)]. We plan to further investigate the dynamic 
causal connectivity of brain regions in patients with MDD, 
and investigate whether their emotional abnormalities are 
related to impaired top-down regulation, impaired bottom-
up regulation, or both. 
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FIGURE 2. Dynamic models for self-
regulating aversive emotions. (A) 
The optimal dynamic causal model 
depicts the connections between 
the VS, dACC, DLPFC, and VLPFC. 
Bidirectional endogenous connec-
tions (the fixed connections) were 
identified between each pair of 
nodes, except between the dACC 
and VLPFC. Cognitive functions 
and Montreal Neurological Institute 
(MNI) coordinates are shown for each 
region. For each modulatory effect, 
both the connection strength (which 
indicates the frequency of exertion) 
and posterior probability (%) (which 

represents the conditional probability given the observed data) are shown. (B) A dual regulatory model is proposed for the regulation of 
emotion. Bottom-up regulation involves an indirect pathway that is initiated by the VS to the DLPFC via both the VLPFC and dACC. Top-
down regulation involves modulation imposed by the DLPFC on the VS directly.
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Recognizing emotions 
based on multimodal 
neurophysiological signals 

Xiang Li1, Peng Zhang1, 
Dawei Song*1,2, Yuexian Hou1

In the era of big data, the ability to computationally 
assess human emotions based on neurophysiological 
signals, such as brain signals, respiration, and heart rate, is 
now a possibility. Emotion, sometimes referred to as affect 
or mood, is an internal experience sometimes caused by 
external events. Emotion manifests in expressions such as 
joy, grief, fright, anger, sympathy, and disappointment. 

Emotion recognition is a hot topic in cognitive 
neuroscience and psychophysiology, and has become 
increasingly relevant to computing and information 
sciences. Recent neurological studies have emphasized 
the role of emotion in social interactions, cognition, and 
rational decision making (1, 2). Within the field of artificial 
intelligence (AI), a new interdisciplinary area called 
“affective computing” (AC) has emerged. The goal of AC is 
to empower computer systems to recognize, comprehend, 
and respond appropriately to human emotions for the 
sake of natural human–computer interactions (HCIs) (3).

More practically, emotion recognition could help in 
detecting mood-related mental health problems such 
as depression, which is highly linked to suicide (4). The 
World Health Organization (WHO) estimates that by 2020, 
major depression will be the second leading cause of 
disability in the world, just behind ischemic heart disease 
(5). Although physiological and neuroimaging data have 
become increasingly available, psychiatrists urgently need 
better tools to utilize the information for diagnosing and 
prognosing depression in its earliest stages, when there 
is the highest potential for effective treatment. To address 
this, machine learning techniques, which can learn from 
and make predictions using data, may be key for mining 
reliable diagnostic and prognostic information from these 
data (6, 7).  

In the field of education, the Massive Open Online 
Courses (MOOC) platform has been widely adopted 
around the globe. However, a major challenge has been 
how effectively the teachers or the platform can track the 
level at which a student is paying attention. Neuroscience 
and psychology research has shown that cognitive 
processes, such as attention and long-term memorization, 
are tightly linked to emotions (1). If a student gazes at the 
computer screen at length without displaying signs of 

interactive pleasure, it is likely that a mood of antipathy 
has emerged, which can result in low learning efficiency. 
AC can provide the ability to assess the emotional states 
of learners in an online environment based on analysis of 
signals from various sensory apparatuses, and teaching 
strategies can be automatically adapted to accommodate 
transitions in emotion, as they occur (8).

AC has been adopted for promoting the information 
retrieval (IR) experience, which underlies applications such 
as web search engines. Researchers have observed that 
positive emotions often reflect a user’s satisfaction with 
search results (9) and interest in certain information (10). 
Negative emotions, on the other hand, occur more often 
with a user’s dissatisfaction with search results and search 
strategies (9). Capturing the emotional states of users 
while they are seeking information through search engines 
can be used as feedback to adjust the search engines’ 
retrieval strategies and to better predict the topical 
relevance of information being presented to users (11, 12).

Most emotion recognition approaches are based on 
the James-Lange theory, which claims there is a strong 
correlation between emotions and physiological arousal 
(13). However, to date most studies have concentrated 
on detecting emotions from a single modality of sensory 
data. Now, with recent advances in sensing technologies, 
synchronized detection of neurophysiological responses 
from different modalities can be acquired. These include 
measurements of temperature, respiration, electrical 
conductance of the skin, and electrical activity of the brain 
and skeletal muscles. Integrating these measurements 
with advanced machine learning techniques opens 
up opportunities to develop effective methods for 
recognizing human emotion. 

In previous research, emotion recognition based on 
multimodal data typically concentrated on the feature-
fusion method (which combines features from multiple 
modalities together directly) or decision-fusion method 
(which uses a majority vote or a weighted sum of decisions 
from multiple classifiers for each data modality) (14, 15). 
In these studies, the correlations across different neuro-
physiological data modalities have not been effectively 
exploited. Our published work has shown that the idea 
of a multimodal deep learning approach is applicable 
and effective in recognizing emotional states from 
multiple channels of neurophysiological signals (16). In 
this article, we describe a multimodal fusion framework 
whereby deep learning techniques can be used to acquire 
representations across different data modalities, as 
opposed to just one, and to classify the emotional state of 
subjects. Specifically, we apply and evaluate our method 
on a widely used and publicly available benchmarking 
dataset, namely “A Dataset for Emotion Analysis using 
Physiological Signals,” or DEAP (17). 

Multimodal deep learning framework
Deep learning is a popular research branch of machine 

learning, which is inspired by progress in neuroscience 
and based on studies on information processing and the 
communication mechanisms of the underlying neural 

systems. Its hierarchical 
neural network-based 
learning architecture 
encompasses 
several layers of 
representations or 
“nodes,” where the 
values of higher-level 
nodes are defined 
based on lower-level 
ones. Multimodal 
deep learning aims 
to gain joint features 
at an abstract level, 
by utilizing several 
pathways of deep 
learning from 
correlated data 
modalities. More 
recently, deep learning techniques have been successfully 
applied to feature learning in various pattern recognition 
tasks (18) and multimodal learning applications (19, 20).

In our work, we adopted multiple pathways of deep 
belief networks (DBNs), each of which is built for one 
data modality. A DBN is a type of deep learning model 
composed of several stacked restricted Boltzmann 
machines (RBMs), which are artificial neural networks 
that consist of two layers of input and output nodes. 
By stacking several RBMs together, a DBN is able 
to approximate any mathematical function for data 
transformation and representation. Usually, the lower 
RBM’s output is regarded as the input of the upper one 
and it does not allow connections between nodes in 
the same layer. Each connection is assigned a weight 
parameter, and its value is decided and adjusted by 
several rounds of model training by utilizing sample data 
that is fed through the input layer.

Our multimodal deep learning framework is shown 
in Figure 1. Each DBN consists of two stacked RBMs, 
and v1 represents the input layer into which manually 
extracted features of electroencephalograms (EEGs) and 
peripheral physiological signals were fed. Further, h1 and 
h2 are output layers that can be used to extract higher-
level abstract representations. Then a discriminative RBM 
(DRBM), a special kind of RBM acting as a classifier, is 
put over the combination of h2-layer representations 
for learning a shared representation in h3 and fulfilling 
emotion recognition tasks by the label layer, where each 
node represents one emotional state.

Empirical evaluation
The framework we describe has been validated 

on the publicly available DEAP dataset, which was 
collected through an experimental paradigm designed 
to elicit different emotions from the subjects through 
exposure to specifically selected music videos. The 
subjects’ EEG signals, as well as other types of peripheral 
physiological signals, were continuously recorded while 
the music video was being viewed. Examples of these 

peripheral signals 
include the electrical 
activity of muscles 
[electromyogram 
(EMG)] and 
eye movement 
[electrooculogram 
(EOG)], galvanic 
skin response (GSR), 
respiration, and skin 
temperature. DEAP 
also provides data 
from subjects’ self-
assessment of their 
emotions, rated 
according to Russell’s 
valence-arousal 
scale (21). By utilizing 
these rating values, 

we divided the samples into two emotional classes 
(i.e., positive and negative emotional states) as most 
studies have done for validating emotion recognition 
performance (17). 

Feature extraction is important to machine learning 
tasks. In addition to the widely used linear features, 
we opted to extract a variety of nonlinear features 
(e.g., correlation dimension and Shannon entropy) 
from neurophysiological signals. We compared the 
recognition performance of our multimodal deep 
learning method with a commonly used traditional 
classification approach. We first applied the k-Nearest 
Neighbor (kNN) classifier to the features of EEGs. We 
then applied the same classifier to the combined features 
of peripheral physiological signals, and to the combined 
features of EEG and peripheral physiological signals. 
Through experimental comparisons, we have found that 
the use of the deep learning approach shown in Figure 
1 to analyze multimodal neurophysiological signals 
can achieve better recognition of emotions than the 
traditional kNN classifier based on the use of different 
modalities individually or in combination. 

In this article we have summarized how it is possible 
to recognize emotion using a deep learning approach 
based on multiple neurophysiological signals. In 
the future, emotion-related modalities not limited to 
neurophysiological signals (e.g., speech and functional 
magnetic resonance imaging) could also be added 
into the framework as shown in Figure 1. Going 
forward, it will be interesting to investigate the kind of 
neurophysiological signals that most strongly contribute 
to emotion recognition.
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FIGURE 1. Deep learning framework for multimodal data.
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S ynchronous firing of populations of neurons, 
which is an important source of brain electrical activity, 
contributes significantly to the neurobiological basis of 
human cognitive processing (1). Electroencephalography 
(EEG) captures this mechanism by measuring voltage 
fluctuations that result from the summation of the simulta-
neous activity of millions of neurons (2). The EEG signals 
being recorded contain information arising from the 
activation of scattered brain regions, which may be located 
either near or far from the cerebral surface. EEG predomi-
nantly measures the activity of cortical pyramidal neurons, 
because the geometrically parallel organization of these 
cells ensures that their synchronous firing can be easily 
detected via electrodes placed on the subject’s head (3). It 
has been suggested that scalp EEG amplitudes elicited by 
the onset (or offset) of a sensory or a cognitive event (i.e., 
event-related EEG) can be detected as distinct from spon-
taneous or background EEG signals (4). This methodology 
has proven to be a valuable tool for cognitive neuroscien-
tists, including those interested in human decision making 
(Figure 1A). The process of decision making can be broken 
down into several steps, including situation perception, 
option evaluation, action selection, and learning from 
outcome (5). The temporal overlap between the different 
stages of decision making provides huge difficulties for 
investigating the separate neural mechanisms underly-
ing each stage. The EEG can help address this problem 
because it enables high temporal resolution (6).

As pointed out by Makeig et al., traditional event-
related EEG data processing consists of two approaches, 
namely, a time-domain approach using event-related 
potentials (ERPs) that focuses on temporal features of the 
data, and a frequency-domain approach using spectrum 
analysis that focuses on a spectrum of frequencies or 
energies of the data. Neither of these fully represents 
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the neural dynamics of the brain, which have important 
implications for the underlying neurocognitive function 
(1). The drawbacks inherent in the classical methods have 
long been acknowledged (see below), and researchers 
have sought to explore novel techniques of data analysis 
in recent years. Below we discuss the pros and cons of 
these techniques and their applications in decision-
making studies.

Dynamics of neural synchronicity
Electrophysiological activity in the human brain is 

highly oscillatory, which means that the firing patterns of 
neighboring neurons tend to be synchronized because 
of the feedback connections between them (3). The 
theoretical significance of neural oscillation lies in the 
fact that it is the neuroelectric basis of distinct cognitive 
activities such as perception, memory, and consciousness 
(7). Data recorded from any given electrode contains 
power/phase dynamics that define the characteristics 
of neural oscillation (3). To decipher this information, 
a time–frequency analysis is necessary, which depicts 
the temporal synchrony of oscillatory activity over 
multiple frequency bands (Figure 1B). This approach 
helps unravel neural oscillation patterns in both the time 
and frequency domains simultaneously that cannot be 
reflected by traditional methods (for example, traditional 
cross-frequency coupling only results in a single index 
that reflects the intensity of synchronization between two 
oscillations over the whole time span) (3).

It is worth noting that a single EEG oscillation can be 
involved in different cognitive processes, because the 
combination of neurons that make up oscillations can 
belong to spatially overlapping or segregated functional 
networks (8). Therefore, it would be questionable to infer 
a one-to-one mapping relationship between a cognitive 
function and an oscillation response. Take medial frontal 
theta rhythms as an example. Numerous studies have 
reported that oscillations within the theta band (4–7 Hz) 
are critical for decision making under uncertainty, possibly 
reflecting neurophysiological processes underlying 
the way the brain learns from the environment (9–11). 
Nevertheless, frontal theta rhythms are also activated 
in a wide range of other cognitive tasks such as error 
processing and conflict detection, and thus likely 
represent a general operating mechanism involved in 
action monitoring, rather than a specific decision-making 
component (11). 

Decomposing EEG data
The use of both principle component analysis (PCA) 

and independent component analysis (ICA) in EEG 
data processing is also becoming popular. The PCA 
approach treats the ERP waveform as a combined 
effect of temporally irrelevant voltages presenting 
simultaneously in the brain, and tries to provide a set of 
latent components that may index physiologically distinct 
processes (1, 9) (Figure 1D). By applying temporospatial 
PCA to ERP data, Foti et al. revealed that the feedback-

FIGURE 1. Examples 
of advanced 
electroencephalography 
(EEG) processing techniques. 
Participants took part in 
a monetary gambling 
game and the outcome 
feedback-elicited EEG data 
were analyzed. Refer to 
(9) and (14) for detailed 
experimental designs. (A) A 
traditional method for event-
related EEGs, event-related 
potential (ERP) analysis. (B) 
A time–frequency analysis of 
EEG. Left panel: the event-
related spectral perturbation 
(ERSP). Right panel: the 
inter-trial coherence (ITC). (C) 
The single-trial display of the 
P3-latency sorted ERPs. (D) 
Principle component analysis 
(PCA) of the data from (9). 
(E) Independent component 
analysis (ICA) of the data 
from (14).
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related negativity (FRN)—represented as a negative 
wave elicited by the outcome feedback from decision-
making tasks in conventional ERPs (12)—is actually a 
positive deflection localizing in the striatum (13). PCA 
components of ERP data are temporally or spatially 
orthogonal (or uncorrelated), because PCA specifically 
makes each successive component account for as much 
as possible of the remaining activity that has been 
unaccounted for by previously determined components. 
Unlike PCA, the ICA method seeks to maximize 
independent sources of activity and results in temporally 
independent components with unconstrained spatial 
distribution (1). By applying ICA to the EEG data recorded 
in a monetary gambling game, we found that the fronto-
central theta component, the source of which is located 
in the anterior cingulate cortex, was closely associated 
with future risk-taking behavior (14) (Figure 1E). 

PCA and ICA techniques enhance the precision of 
source localization of EEG data (15). However, we should 
keep in mind that as a data-driven method, neither PCA 
nor ICA is guaranteed to yield neurophysiologically 
meaningful results (16). Additional anatomical and 
empirical evidence is highly recommended (17).

Single-trial ERPs
Traditional analysis of event-related EEG data 

recognizes amplitude or energy changes time-locked 
to a given event by averaging epochs over a period 
of time, assuming that peaks at the same latencies 
are near-identical at the single-trial level (18). This 
oversimplified approach leaves a lot of the cognitively 
relevant information in the temporal dimension of EEG 
activity undiscovered (3). In contrast, single-trial analysis 
offers an opportunity to directly investigate systematic 
variations between trials (Figure 1C). This method does 
a better job of discovering potential links between 
cognitive processes and neural dynamics compared with 
conventional averaging (3). For instance, our recent study 
revealed that the P3 amplitudes in response to outcome 
feedback predict subsequent stay/switch decisions on a 
trial-by-trial basis (14). Importantly, single-trial analysis in 
the time–frequency domain could be used to determine 
whether averaged ERP features are shaped by stimulus-
evoked power perturbations or phase synchronization/
desynchronization of ongoing oscillatory activity (19). 
Delorme et al. showed that phase synchronization of 
the lower band of theta rhythm contributes significantly 
to the far-frontal positive component that indicates the 
speed of upcoming motor responses (18). This finding 
helps explain the neural mechanisms of motor decision 
preparation.

In summary, when appropriately used, newly 
developed methods of EEG processing can uncover 
novel aspects of decision-making dynamics that 
traditional analyses cannot. Still, researchers should 
be aware of the methodological shortcomings of these 
techniques to avoid producing results that are flashy but 
scientifically vague.
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Behavioral and 
electrophysiological 
profiles reveal domain-
specific conflict 
processing

Guochun Yang1,2, Weizhi Nan1,2, 
Qi Li1*, Xun Liu1*

C ognitive control refers to the top-down 
control of cognitive processes based on higher-order 
representations, such as goals or plans. It serves an 
essential role in carrying out goal-directed behaviors, 
especially when situations present conflicting 
information. A person’s ability to perform a cognitive 
task can be hampered when the task involves an 
incompatible association between a stimulus and 
a response—a phenomenon known as the stimulus-
response compatibility (SRC) effect. For example, in the 
Stroop task, participants are asked to name the color 
of a word; however, the word itself is presented in an 
incongruent color (e.g., the word “red” is displayed in 
blue ink). This creates a stimulus-stimulus (S-S) conflict, 
which stems from an incongruency between the task-
relevant information (the color of the word) and task-
irrelevant features of the stimulus (the word itself) (1). 
In contrast, a stimulus-response (S-R) conflict arises 
when there is incongruency between the task-irrelevant 
stimulus and the required response. One such example 
is the Simon task, in which participants are asked to 
respond to a stimulus that is displayed at the opposite 
side of the location of a response button (e.g., pressing 
a button on the right in response to an item shown on 
the left) (2). In addition, a person’s performance on the 
current trial is also modulated by whether or not there 
exists incongruency in the preceding trial. Response 
times tend to be shortened in incongruent trials but to 
be lengthened in congruent trials, when following an 
incongruent trial as compared to following a congruent 
trial (3). Therefore, the SRC effect, which is indexed by 
the performance difference between the incongruent 
and congruent trials, is usually reduced following trials 
using incongruent information as compared to those 
using congruent information—a phenomenon known 
as conflict adaptation (CA) (4). This is likely because 
the brain regions involved in conflict resolution have 
already been activated from being presented with a task 
involving incongruent information and may continue 

to facilitate conflict processing in the following trial. 
Researchers often use SRC and CA effects to examine 
the mechanisms and brain regions involved in cognitive 
control of conflict processing. However, it is still unknown 
whether detection and resolution of S-S and S-R conflicts 
recruit distinct mechanisms or rely on the same resources 
in the brain.

Two models have been proposed for cognitive control 
of conflict resolution within the brain. The conflict-
monitoring model is considered to be domain-general, 
meaning that the brain does not differentiate between 
S-S and S-R conflicts, and posits that the two types 
of conflict are resolved via the same mechanism (5). 
Thus, the conflict-monitoring model predicts that when 
both types of conflicts are present, they will interfere 
with each other and produce nonadditive SRC effects. 
In addition, CA could occur for both types of conflict 
because the conflict-monitoring model presumes that 
both S-S and S-R conflicts share the same modular 
architecture of conflict resolution within brain networks 
for cognitive control. In contrast, the dimensional overlap 
model posits that conflicts in different SRC tasks can be 
categorized into different types or domains (e.g., S-S and 
S-R conflicts), based on the similarity (overlap) between 
any two dimensional sets of task relevant stimulus, task 
irrelevant stimulus, and response (6). Therefore, S-S and 
S-R conflicts would be of a different nature and resolved 
by distinct and domain-specific modules. Thus, this 
domain-specific model has been proposed to refine the 
conflict-monitoring model (7).

We have conducted several studies collecting 
behavioral and event-related potential (ERP) data that 
support the hypothesis that S-S and S-R conflicts are 
processed via distinct mechanisms. According to the 
dimensional overlap framework, processing S-S conflicts 
should occur at the stimulus-processing stage—earlier 
than that of S-R conflicts, which are processed when 
the response is produced. We therefore examined the 
N2 component of electroencephalograph readouts, 
for which the amplitude is thought to index the level 
of conflict processing. The data showed that the N2 
component evoked by the S-S conflict peaked earlier 
than that elicited by the S-R conflict, which suggests that 
processing of S-S and S-R conflicts has distinct temporal 
dynamics (8). In a second experiment, we tested whether 
SRC effects resulting from S-S and S-R conflicts are 
additive, which would be expected if the resolution of 
S-S and S-R conflicts relies on independent mechanisms. 
Our behavioral studies combining the spatial Stroop task 
(S-S conflict) and Simon task (S-R conflict) showed that 
the SRC effects on reaction times and error rates were 
indeed additive when both types of conflict were present 
(9). Finally, if distinct modules of cognitive control are 
engaged when processing S-S and S-R conflicts, then 
CA effects should be observed only within the same 
type of conflict but not across different types of conflict. 
Our ERP studies have shown that significant CA effects 
on N2 amplitudes (i.e., a reduced SRC effect following 
an incongruent trial versus a congruent trial) were only 
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Computational-based behavior analysis aims to 
automatically identify, characterize, model, and synthesize 
multimodal nonverbal behavior within both human–machine 
as well as machine-mediated human–human interaction. It 
uses state-of-the-art machine learning algorithms to track 
human nonverbal and verbal information, such as facial 
expressions, gestures, and posture, as well as what and how 
a person speaks. The emerging technology from this field 
of research is relevant for a wide range of interactive and 
social applications, including health care and education. The 
characterization and association of nonverbal behavior with 
underlying clinical conditions, such as depression or post-
traumatic stress, could have significant benefits for treat-
ments and the overall efficiency of the health care system.

Here we review our collaborative research efforts on 
advanced computational approaches to studying nonverbal 
and physiological signals related to psychological states. 
First, we discuss the computational behavioral analysis 
framework. Second, we discuss the cardiovascular 
physiological measures that are the basis of the 
biopsychosocial model of our research. Finally, we discuss 
our intended future work and the limitations of integrating 
computational analytical techniques with physiological 
sensors in order to infer psychological states. 

By utilizing computerized, machine-learned behavior 
assessment approaches, we have identified a number 
of behavioral indicators of psychological distress. Such 
indicators include, but are not limited to, the average 
intensity or duration of smiles (1), increased response times 
in controlled interview studies (2), attenuation of expressions 
associated with social isolation (3), and changes in the voice 
quality of a speaker (3–5). These findings not only confirm 
prior findings in the psychology literature, which mostly 
rely on subjective assessments and manual annotations, 
but also contribute to a better scientific understanding of 
psychological states through the application of advanced 
computational methods. The automated assessment of 
a patient’s nonverbal behavior could prove valuable for 
clinicians and provide them with additional objective 
assessments of a patient’s state or development over time.
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present when two consecutive trials involved the same 
type of conflict (10).

Taken together, our findings from our behavioral and 
ERP experiments support a domain-specific model for 
cognitive control of conflict processing. However, though 
such modular organization for cognitive control may 
be more efficient and can account for domain-specific 
modulation of conflict processing, we would caution 
against overinterpreting the data and concluding that 
cognitive control should be divided into endless distinct 
and specialized modules. Evidence from both behavioral 
and neural pattern classification studies suggests that 
both domain-general and domain-specific modules exist 
in the brain (11). More empirical studies are needed to 
examine the principal factors, such as sensory modalities 
or task sets, that impact such modular organization of 
cognitive systems.
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Computational-based 
behavior analysis 
and peripheral 
psychophysiology 
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Within an educational context, computer-assisted training 
and assessments of a person’s social skill proficiency and 
expertise can help to create individualized education 
scenarios, in particular for those with learning disabilities 
or social anxiety. Computer-assisted vocational training, 
for example, might be able to improve the chances that 
a young adult with autism spectrum disorder (ASD) can 
become a fully integrated member of society through 
experiential and guided preparation. Computationally 
based behavior analysis has already found its way into a 
number of application-oriented educational scenarios, 
including job interview training (6) and public speaking 
training (7, 8), as well as science, technology, engineering, 
and mathematics (STEM)-oriented learning technologies (9).

This novel field of research is at the intersection of 
psychology, machine learning, multimodal sensor fusion, 
and pattern recognition, and is emerging as an essential 
field of investigation for computer scientists. Most recently, 
researchers have started to not only assess visual and 
acoustic behavior via unobtrusive and noninvasive sensors 
(i.e., cameras and microphones), but also track otherwise 
latent measures, such as a person’s heart rate (10). This 
approach to assessing often inaccessible measures of a 
person’s physiology could enable novel applications and 
provide a deeper understanding of the physiological 
processes underlying observable behavioral changes.

Psychologically grounded physiological measures
Most physiological approaches in computer science 

only use one type of physiological measure. Conversely, 
our research uses multiple psychologically grounded 
measures that reflect autonomic nervous system activity. 
For example, it is not uncommon for applied computer 
science researchers to measure a single peripheral 

physiological measurement, 
such as heart rate variability 
(HRV) (11) or electrodermal 
activity (EDA) (12), because 
they are assumed to be 
indicative of cognitive 
workload and/or stress. 
However, changes in HRV 
and EDA measures have 
been correlated with several 
different psychological 
states and processes, e.g., 
HRV can vary depending on 
cognitive workload and on 
how a risky choice is framed 
during the decision-making 
process (13, 14). 

Relying on single 
measures can mask 
important processes 
because of the one-to-
many mapping between 
a single physiological 
measure and the numerous 
psychological processes to 
which it can be correlated. 
Conversely, according to 
the biopsychosocial model 

(BPS) (15) of challenge and threat, physiological measures 
of cardiovascular responses can be used to determine 
specific patterns that represent the two motivational 
states of challenge and threat. A person will perceive a 
situation as a challenge if they determine that the available 
resources outweigh what is needed to complete a task. 
Whereas, one perceives a threat if instead the evaluated 
resources do not meet the demands to carry out a task, or 
if there is uncertainty. 

The same neural and endocrine processes affect 
cardiovascular responses during both a perceived challenge 
and threat, including increased heart rate (HR) and increased 
ventricular contractility (VC). However, cardiac output (CO) 
and total peripheral resistance (TPR) differ depending upon 
the motivational state. The neuroendocrine underpinnings 
(16) of cardiovascular responses involve the sympathetic-
adrenal-medullary (SAM) and hypothalamic pituitary-
adrenal-cortical (HPA) axis. Both states involve the activation 
of the SAM axis, while only the threat state involves both 
of the axes. A challenge state results in decreased TPR and 
an increase in CO, whereas a threat state leads to little or 
no change or a decrease in CO and little or no change 
or an increase in TPR (17). We infer CO,  TPR, and VC by 
relating different points on the multivariate cardiovascular 
physiological data stream (Figure 1).

	
Social cues affect cardiovascular responses

Our research has applied the BPS model to understand 
how social interactions with a virtual human affect 
cardiovascular responses (18). We designed a scenario 
(game) in which participants negotiated with a virtual 
human partner over multiple issues regarding the sale 
of a mobile phone. Our motivation in using a virtual 
human and this particular interpersonal task was to 

      

FIGURE 1. Sample continuous data stream of the multivariate cardiovascular physiology 
measures. (A) Impedance cardiograph. (B) Electrocardiogram. (C) Blood pressure graph.  
(D) dZ/dt, the derivative of the impedance cardiograph.
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increase the ecological validity of the experiment, while 
also maintaining tight experimental control of social cue 
manipulation. Virtual humans were able to make emotional 
facial expressions and behave either competitively or 
more cooperatively during the negotiation. The results 
showed the same patterns of cardiovascular measures 
as the BPS model of a psychological state of threat 
when there was discordance between the behavior and 
expressed emotion of the virtual human. A corresponding 
eye tracking analyses during this task further suggested 
that the participants experienced uncertainty because of 
the discordance, which is characteristic of a threat state. 
Specifically, participants in the discordant conditions 
looked at the virtual human’s face more, most likely to 
sample information that might help them reconcile the 
discordance between the behavior and facial expressions.

Throughout the task, individual events during the game 
were synchronized with the cardiovascular physiology 
data stream. These events would take place at variable 
intervals because of the interactive nature of the task, but 
the average frequency was between 5 and 10 seconds. 
Traditionally, we have analyzed the physiological measures 
at every minute using ensemble averaging, which is 
the mean of a signal as a function of a microstate of 
that signal, e.g., a heartbeat. We then related the time 
points between the dZ/dt and the electrocardiogram on 
the ensembled waveform (a composite waveform for a 
specific time window). However, we anticipate moving 
to a more fine-grained analytical approach in which we 
relate events in the game to a window corresponding to 
the near-real time cardiovascular data stream. Moreover, 
we are currently engineering solutions to synchronize 
multimodal data from the computational behavior analysis 
framework with the corresponding time course in both 
the virtual game environments and physiological data 
streams. For example, a preliminary analysis indicates 
some interesting relationships between the voice quality 
measures of the computational behavior analysis and the 
BPS cardiovascular physiology measures (19). One applied 
goal in this line of work is to detect states of relative 
challenge or threat from the cardiovascular data in near-
real time, so as to design an interactive virtual human that 
is responsive to the user’s motivational state.

Certain limitations must be overcome in order to 
further understand the dynamics behind real-time 
changes in an individual’s cardiovascular state and the 
concomitant psychological states. Practically, many of the 
sensing hardware setups are not robust enough to detect 
movement artifacts. Therefore, the current application for 
this approach involves tasks in which users are seated. 
Scientifically, much can be gained by understanding the 
variability of humans’ physiological responses to the same 
stimulus (20). For example, two different individuals might 
have different cardiovascular responses as a result of how 
they evaluate perceived resources relative to perceived 
task demands. A future goal will be to understand the 
characteristics that predict how an individual will respond 
to different psychological stressors. 
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Applications

Theories and models derived from computational 
psychophysiology studies can provide a  

foundation for translating research into new 
applications and interventions.
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How the ancient art 
of acupuncture works: 
Neuroimaging studies 
shed light on brain activity

Wei Qin1,2†, Lijun Bai3†, Zhenyu Liu2†,  
Peng Liu1, Yi Zhang1, Jixin Liu1, Kai Yuan1, Baixiao 

Zhao4, Jianping Dai5*, Yijun Liu6*, Jie Tian1,2*

In 1971, James Reston’s story “Now, Let Me Tell You 
about My Appendectomy in Peking” appeared on the front 
page of The New York Times. The description of his treat-
ment single-handedly ignited Americans’ curiosity about 
China and began America’s decades-long relationship 
with acupuncture (1). Acupuncture—an ancient healing 
modality and still quite a mysterious technique originating 
in traditional Chinese medicine—is the insertion of needles 
into, and the subsequent stimulation of, specific points 
(acupoints) on the body to facilitate healing. In 1997, a 
U.S. National Institutes of Health (NIH) panel issued a 
consensus that acupuncture is effective as a therapeutic 
intervention for specific conditions and can have fewer 
and less harmful side effects than drugs or surgery (2). 
More recently, a survey conducted by the World Federa-
tion of Acupuncture and Moxibustion Societies showed 
that acupuncture was being used in 183 countries in 2013 
(3). Researchers have since been investigating the effects 
of acupuncture on the human brain using neuroimaging 
techniques, providing insight into the particular brain net-
works involved in the treatment’s impact. Here we discuss 
some of these studies.

Temporospatial encoding of acupuncture’s effects 
on the brain	

Acupuncture needle manipulation stimulates multiple 
peripheral sensory receptors, which send signals to the 
brain mainly through the spinal ventrolateral funiculus. 
Early studies using functional magnetic resonance 
imaging (fMRI) aimed to establish a spatial map correlating 
acupuncture stimulation at peripheral acupoints with 
the corresponding functional activation in the cerebral 
cortex (4). These studies used fMRI to identify attenuation 
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of blood oxygen level-dependent (BOLD) signals in the 
limbic/paralimbic, brainstem, and neocortical regions 
(5). The BOLD signal attenuation, compared to a “resting 
period” baseline, represents decreased regional 
neuronal activity that occurs while an external stimulus 
is processed. A large proportion of the acupuncture 
neuroimaging studies since 1998 have used this method 
of analysis, dubbed a “block” design (6). The block design 
is built on a stimulus-response model that assumes 
the BOLD signal will instantaneously return to baseline 
(prestimulus) level after stimulation (6). However, clinical 
reports have made it clear that acupuncture provides 
relief well after the actual procedure and even peaks long 
after the stimulation session is terminated (6). Our analysis 
from 2009 indicated that because of the sustained effects 
of acupuncture, the block design and its related analytical 
methods have actually biased the experimental results of 
brain responses to acupuncture (7), and thus the results 
cannot be used to explain the mechanism of acupuncture. 

More recently, we have published findings that 
could shed light on the complex mechanisms by which 
peripheral acupuncture stimuli and central nervous 
system (CNS) neuronal dynamics interact as a function of 
time. Needle manipulation alone can evoke consistently 
increased signal changes across several different brain 
regions, as well as more complex and time-varied neural 
responses during the poststimulus phase. We infer 
from these findings that acupuncture creates a biphasic 
response consisting of an initial phase involving effects 
due to needle stimulation of deep tissue, with skin 
piercing and biochemical reactions to tissue damage, 
followed by a second phase comprising prolonged 
physiological effects for a period after the removal of the 
acupuncture needle (8).

Stimulating different acupoints to treat various clinical 
conditions is usually accompanied by multidimensional 
physiological and psychological responses, which are 
also regulated by the CNS (9). These responses suggest 
that the peripheral acupoint-brain interaction may 
involve the coordinated activity of large-scale brain 
networks. The CNS encodes the body’s responses to 
peripheral stimulation at different acupoints that are 
then deciphered within a functionally specific brain 
network (10). Furthermore, the late, sustained response 
(the second phase described above) utilizes these brain 
networks to implement certain long-term functions (10). 
A key question, therefore, is: Do the interactions between 
these brain networks control the expression of brain 
responses to acupuncture stimulation, and if so, in what 
way is this accomplished? To investigate this possibility, 
our research group used a non-repeated event-related 
(NRER) paradigm (11), employing two visual acupoints 
(GB37 and BL60) and a nonvisual acupoint (KI8) in 
tandem with fMRI. We found that needle stimulation at 
each of these acupoints separately induced spatially 
converging brain responses, which overlapped at the 
posterior cingulate cortex and precuneus (PCC/pC) 
region. The PCC/pC region then interacted with a vision-
specific functional network [i.e., the visual resting state 

can also modulate the 
body’s homeostasis 
to produce treatment 
effects in patients (9, 
16, 17). Because these 
observations need 
further validation, 
quantitative brain 
measures may be used 
to provide an evidence-
based rationale for the 
interactions of disease-
specific neural correlates 
and acupuncture-
targeted regulatory 
encoding in the brain.

Although peripherally 
applied acupuncture 
stimulation is mediated 
through multiple 
peripheral systems, 
the initiation of its 
therapeutic effect 
requires coordinated 
coactivation of multiple 
brain regions (9). 
Functional dyspepsia 

(FD), or indigestion, is the most common upper 
gastrointestinal symptom and is diagnosed when upper 
gastrointestinal endoscopy reveals no organic lesions 
that might explain the symptoms (18). One recent study 
was designed to investigate acupuncture treatment in 
patients with FD (19). Seventy-two patients with FD were 
randomly assigned to receive either acupuncture or sham 
acupuncture treatment for four weeks. Ten patients in 
each group were randomly selected for positron emission 
tomography (PET) scanning before and after treatment. 
Compared with the sham acupuncture group, those 
receiving real acupuncture showed greater deactivation 
in the brainstem, anterior cingulate cortex, insula, 
thalamus, and hypothalamus, and these deactivations 
were associated with greater improvements in FD 
symptoms (19). Another study examined the efficacy of 
transcutaneous vagus nerve stimulation (tVNS) for one 
month in treating major depressive disorder, because the 
severity of depression has been significantly associated 
with functional connectivity changes between the DMN 
and several brain regions, such as the orbital prefrontal 
cortex, insula, and dorsal anterior cingulate cortex (20). 
This study suggests that tVNS-modulated treatment 
effects are not limited to a specific targeted brain region, 
but are associated with a wide range of brain networks 
contributing to emotion/affect regulation (see Figure 1).

Conclusions and future directions
It has long been the hope of both scientists and doctors 

to treat diseases using noninvasive techniques that 
activate self-regulating mechanisms without using drugs 
or surgery. One researcher’s recent effort has focused 

network (RSN)] in different patterns, and could thus serve 
as an information hub to drive the intrinsic visual network 
and implement specific brain functions after different 
acupoint stimulations (10). In a broader sense, this type 
of functional connectivity can be thought of as the brain 
being organized as a metanetwork (a network of coupled 
networks). For example, one landmark observation 
identified a distributed network of associated regions, 
often referred to as the default mode network (DMN), 
which behaves as a functionally coupled system (12). In 
addition, a 2009 study indicated that specific areas of the 
DMN, especially the PCC/pC, are key components within 
the network and can be considered as putative “cortical 
hubs” (13).

Disease-specific neural correlates and acupuncture-
targeted regulatory encoding in the brain

As one of the most widely used complementary and 
alternative medicines, acupuncture has shown promise 
for postoperative use and for lessening chemotherapy-
induced nausea and vomiting and postoperative dental 
pain. Furthermore, acupuncture may be a beneficial 
adjunct or alternative treatment for drug addiction, stroke 
rehabilitation, asthma, and chronic pain, though the 
evidence for such benefits is less convincing than those 
reported for other uses (2). In 2006, Martin et al. reported 
that acupuncture significantly relieved the symptoms 
of fibromyalgia (14). Acupuncture has been shown to 
activate different types of afferent nerve fibers, and its 
effectiveness has been suggested to depend on individual 
symptoms and previous sensitization to acupuncture 
(15). Clinical reports further indicate that acupuncture 

      

FIGURE 1. Encoding of acupuncture. (A) The theory of traditional Chinese medicine—which began 
about 3,000 years ago—suggests that the stimulation of the acupoints over the body’s organs can 
generate the regulatory signals necessary to maintain the body’s homeostasis and cure diseases. 
(B) Modern perspectives from neuroscience indicate that acupuncture treatments affect disease 
outcomes via changes in the brain. Neuroimaging techniques detect brain activity in response to 
external stimuli, which can be represented as a time-varied, dynamic brain network with various 
activation patterns. These different activation patterns are thought to represent acupuncture’s 
specific effects.

http://www.sciencedirect.com/science/article/pii/S0025619611617291
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on the use of a noninvasive neuromodulation technique 
called repetitive transcranial magnetic stimulation (rTMS) 
(21) to induce electrical currents in cortical neurons, 
which has achieved promising but limited success in the 
treatment of depression. The evidence presented in the 
present review demonstrates that peripheral acupuncture 
stimulation activates specific neural networks (6). These 
pathways give rise to the integration of external trigger 
signals, allowing the brain to initiate internal (self-
regulating) mechanisms. Emerging computational models 
of brain networks provide some evidence-based rationale, 
as well as the first quantitative insights into the self-healing 
effects underlying the ancient art of acupuncture (6). 
These noninvasive brain imaging techniques hold the 
potential to reveal the pathways mediating the effects of 
acupuncture. Understanding these neural circuits and how 
they encode information is fundamental for determining 
how these treatments work.
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Improving working 
memory using EEG 
biofeedback 

Jiacai Zhang, Shi Xiong, Chen Cheng, 
Li Yao*, Xia Wu, Xiaojuan Guo

W orking memory (WM) refers to the ability 
to maintain and manipulate information over short 
periods of time in the context of concurrent processing 
or distractions (1,2). It is widely accepted that WM 
capacity is key for a wide range of higher-order cognitive 
functions (3), therefore the possibility of enhancing 
WM has stimulated a series of WM-training studies 
(4-6). Computerized WM training (CWMT), originally 
developed by Torkel Klingberg, has been widely 
employed for such research, in which subjects repeat 
WM tasks using a computer program that provides 
visual and verbal feedback and rewards based on the 
accuracy of every trial. Subjects who have practiced WM 
tasks using this type of feedback have been reported 
to have significantly higher improvements than controls 
(5). This form of repetitive WM practice is essentially 
behavioral feedback, which activates both the central 
executive and storage subcomponents of the related 
working memory of brain systems. Based on functional 
magnetic resonance imaging (fMRI) studies, researchers 
have attributed such WM improvements to long-lasting 
neuronal changes in WM task-specific areas of the 
brain. These changes are accompanied by alterations 
in common neural networks that are not only related to 
WM but also many other cognitive functions, such as fluid 
intelligence (7). Functional magnetic resonance imaging 
(fMRI) studies have provided further evidence suggesting 
that WM training induces plasticity that alters both 
WM-related neural networks and those related to other 
cognitive functions (8). 

However, most, if not all, of these studies employed 
WM training using behavioral feedback in which subjects 
practice a task, but without use of the neurofeedback 
technology (NF). The purpose of NF technology is to help 
the brain function more efficiently based on approaches 
that induce autoregulation of specific brain regions using 
real-time data depicting fluctuations in brain activity. 
Studies have shown that WM capacity can be enhanced 
by NF training. In NF training, the subject’s brain activity 
related to a WM task is observed and quantified and then 
shown back to the individual along with either a “reward” 
when the brain has changed its activity to a more 
appropriate pattern, or no “reward” if the goal is not met—

College of Information Science and Technology, Beijing Normal University, Beijing, 
China
*Corresponding Author: yaoli@bnu.edu.cn

EEG feedback features 
for improving WM 

To investigate which EEG 
components can contribute 
the most to WM capacity, we 
designed a study to identify 
the moment-to-moment EEG 
spectrum features that represent 
various levels of WM (11). We 
recruited 17 healthy, right-
handed student subjects (7 
female, 20–23 years old) from 
Beijing Normal University, and 
asked the subjects to perform 
“2-back” (WM) tasks and control 
[frontal cortex (FC)] tasks. In 
the 2-back task, the subjects 
were shown a sequence of 
visual stimuli and then asked 
to judge whether a particular 
stimulus was identical to the one 
displayed two positions prior in 
the sequence.

During the experiments, 
a BioSemi ActiveTwo EEG acquisition system with 64 
electrode channels was used to continuously record the 
subjects’ EEG data. We estimated the power spectra of each 
of the 64 EEG channels to be 0.5 milliseconds. The power 
of the EEG rhythms, such as theta (4–7Hz), alpha (8–12Hz), 
sensorimotor rhythm (SMR) (12–15Hz), low beta (13–20Hz), 
and high beta (20–30Hz), is shown in Figure 2. Delta 
(0.1–3Hz) was not included here due to susceptibility to eye 
blink and eye movement. As shown in Figure 2 (left), we 
compared the average of the subjects’ scalp maps during 
WM and FC tasks and found that the anterior-parietal 
region showed the largest differences in activation under 
the two conditions. Figure 2 (right) shows a comparison 
of EEG power, in which we observed that the power of 
the theta rhythms was larger in the WM trials than in the 
FC trials, whereas we observed the reverse for the alpha 
rhythms. We confirmed that the effects on both the theta 
and the alpha rhythms were statistically significant (11).

EEG biofeedback effects during WM training
To determine the effects of EEG biofeedback during 

WM tasks, we conducted a study in which we recruited 
48 female student subjects (20–23 years old) and divided 
them randomly into 4 groups: the neurofeedback (NF)-
training group (5 female, 7 male); the behavioral-training 
group (6 female, 6 male); the sham neurofeedback-
training group (5 female, 7 male); and the no-training 
group (7 female, 5 male) (11). 

Figure 3 outlines the experimental scheme. All of 
the subjects, except for those in the no-training group, 
attended one of the three types of training procedures. 
Each subject began their session with a pretest and 
ended with a posttest, in which they performed the 2-back 
WM tasks and their accuracy and response times were 
measured (11). 

FIGURE 1. Scheme of EEG biofeedback.

      

thus the brain is trained to function more efficiently. This 
gradual learning process can induce enhanced activity 
in WM-related areas of the cortex and neural networks 
(5, 9). In one such example, Zhang et al. employed real-
time functional magnetic resonance imaging (rtfMRI) to 
guide subjects’ training. The fMRI signal recorded from 
the subjects’ left dorsolateral prefrontal cortex (DLPFC) 
was transformed into visual feedback in the form of a 
graduated thermometer. The subjects then learned 
to improve their WM performance using a cognitive 
strategy in which they recited self-generated digit/letter 
sequences subvocally in reverse order. Subjects adjusted 
the sequences’ content, length, difficulty, and recitation 
speed to increase the number of bars in the thermometer 
as high as possible, reflecting upregulated activation in 
the DLPFC (9). 

Electroencephalography (EEG) is the most widely 
used type of NF signal, therefore the term NF is often 
referring to EEG biofeedback. EEGs can be used as 
feedback to teach self-regulation of brain function, 
i.e., the subject is taught to modulate excitatory and 
inhibitory EEG patterns using feedback of their brain 
activity (EEG signals) (Figure 1). EEG biofeedback is now 
used in treatments for a variety of neurological disorders 
and as a means for improving cognitive performance 
(10). Although NF training has been promising, 
additional research is needed to help improve the 
technology. For example, it is still unclear as to which 
features of an EEG are most effective for WM training 
and whether behavioral-based feedback or EEG-
based biofeedback training is more efficient (less time 
consuming) for enhancing WM. Therefore, we designed 
a study to test both of these questions and discuss the 
results below.

http://www.nih.gov/news/pr/nov97/od-05.htm
http://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/
http://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/
http://www.sciencedirect.com/science/article/pii/S0025619611617291
http://www.ncbi.nlm.nih.gov/pubmed/?term=Miwa H%5Bauth%5D
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In the NF training 
group, the EEG signals 
related to the WM 
tasks were transformed 
into visual feedback—a 
rotating sphere with a 
graduated thermometer 
on the computer screen 
that was presented to 
subjects once every 500 
milliseconds. Subjects 
were instructed to use 
a cognitive strategy to 
persistently increase the 
level in the thermometer 
or rotation speed of 
the sphere as much as 
possible. In the sham 
NF-training group, 
subjects completed 
the same experimental 
procedure and received 
the same instructions as 
the NF training group, 
except that they were 
provided with sham 
NF signals, which were 
not from their own EEG 
rhythms but rather from 
a mixture of noise and 
other subjects’ signals. The magnitude and variability of 
the sham EEG signals were similar to those of the real 

signals. In the behavioral-training group, subjects attended 
the CWMT training, performing the WM (2-back) tasks 

      

FIGURE 3. Experimental procedure for NF training and control groups. 

      Computational modeling 
and application of steady-
state visual evoked 
potentials in brain-
computer interfaces

Yijun Wang1, Xiaorong Gao2*, 
Shangkai Gao2

A  brain-computer interface (BCI) is a nonmus-
cular communication channel between the brain and 
a computer or external electronic device. Brain signals 
are directly translated into commands to control output 
devices so that locked-in patients—those incapable of mov-
ing or communicating verbally due to a medical condition 
such as paralysis—can interact with their environments. The 
brain signals used for BCIs can be generated by exog-
enous stimuli. The steady-state visual evoked potential 
(SSVEP) is one of the most commonly used brain signals 
in BCI studies. This is because the SSVEP-based BCI has 
several advantages, including a noninvasive nature, easy 
setup, and fast communication speeds (1). To improve the 
performance of the existing SSVEP-based BCI systems, 
we have created a computational model of SSVEP that we 
have used to develop guidelines for a BCI system design. 
Below, we discuss this model and present the high-speed 
BCI speller as an example of a successfully developed 
SSVEP-based BCI system.

SSVEP-based BCIs
SSVEPs are the electrical signals with which the 

brain responds to periodic visual stimuli. As shown in 
Figure 1A, when a subject receives a light stimulus, 
the luminance of which is modulated with a sinusoidal 
wave, SSVEPs—which exhibit a fundamental frequency 
component that is the same as the stimulus frequency 
and its harmonic—can be recorded over the occipital 
region on the scalp. SSVEPs have been widely used in 
BCI and cognitive neuroscience studies (2). Figure 1B 
shows a diagram of an SSVEP-based BCI speller. The 
system has 40 characters (or “targets”), which flicker 
simultaneously, but at different frequencies. When 
the user looks at a specific letter, the BCI system can 
recognize the fixated target by detecting the frequency 
of SSVEPs using a target identification method. In 
general, BCI performance can be evaluated using the 
information transfer rate (ITR), which describes how fast 
the target can be correctly recognized. ITRs of current 
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using a computer program developed for this study. In 
the no-training group, subjects also attended the pretest 
and posttest, which was similarly separated by a 5-day 
interval; however, subjects were not trained in between 
the two testing sessions. This group served as a control 
to assess the effects of the repetitive performance of the 
same WM tasks in pretests and posttests.

We assessed the change in WM performance by 
measuring the accuracy and time of responses during 
the 2-back tasks for the pretests and posttests. A one-way 
analysis of variance (ANOVA) determined that the each 
of the groups’ pretest performances were equivalent 
[accuracy: F (3, 44)<0.184, P>0.906; response time: F(3, 
44)<1.131, P>0.347]. A pairwise comparison between the 
pretest and posttest results showed increased accuracy (an 
accuracy gain) for each of the groups; however, the effect 
was significant only in the NF-training, behavior-training, 
and no-training groups. The largest effect was in the NF-
training group, followed by the behavioral-training group. 
This gain was significantly smaller for the sham-NF and 
no-training groups compared with both the NF-training 
and the behavioral-training groups. The accuracy gain that 
we observed between the different groups indicates that 
NF training and behavioral training are both superior to 
sham NF training or no training at all. However, it should 
be noted that behavioral exercises took more time to train 
subjects (five training sessions) and showed a slightly 
larger accuracy gain compared with NF training (one 
training session) (11). 

Summary
The goal of our study was to elucidate the effects of NF 

during WM training. Our data demonstrated that young 
healthy adults can improve WM by training (evident by 
our subjects’ increased response accuracy and decreased 
response time in the 2-back task). Future research will 
be needed to ascertain the neurological mechanisms 
underlying WM training.
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FIGURE 2. Comparison of EEG power spectra under working memory (WM) and control [frontal cortex (FC)] tasks. (Left) Scalp map 
for WM and FC tasks respectively. The activation regions during the WM task were mainly located in the anterior-parietal areas. (Right) 
Power percentage of EEG rhythms from grand average event-related potential (ERP) across 17 subjects and across electrodes in the 
anterior-parietal areas. Asterisks indicate significant differences between two task conditions. **P<.01, *P<.05.
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Categorizing SSVEP modulation
The proposed computational model describes SSVEPs 

as a set of sinusoidal signals with specific frequencies and 
phases. Parameters in the model can be used to track 
how different cognitive tasks affect SSVEP. Typically, BCI 
and cognitive studies that use SSVEPs change only one 
parameter (e.g., frequency, phase, or amplitude) at a time. 
Recently, methods that can simultaneously modulate 
multiple parameters (e.g., frequency and phase together) 
have been proposed for BCI studies (7). The approaches 
for modulating SSVEPs can be categorized into three 
groups (see Figure 3):

Frequency tracking
Frequency tracking is the most well-known characteristic 

of SSVEPs (4). SSVEPs exhibit the same frequency as the 
flickering stimuli. The widely used frequency tagging 
technique (i.e., multiple visual targets are tagged with 
different flickering frequencies, see Figure 3A) was 
developed based on this characteristic. The direction 
of the gaze or attention can be determined based on 
the frequency of SSVEPs. Frequency tracking is the 
most popular method for implementing SSVEP-based 
BCIs (2). The proposed computational model of SSVEP 
indicates that, in addition to the fundamental component, 
the harmonic components can also provide distinct 
information for frequency tracking.

Phase tracking
The initial phase of SSVEP can reflect the visual delay 

SSVEP-based BCIs are typically less than 60 
bits/min (1).

Computational model of SSVEP
A computational model of SSVEP is 

a mathematical formula describing the 
relationship between the visual stimuli and 
brain responses (Figure 2A). Computational 
modeling of SSVEPs is advantageous for 
developing target identification methods 
for SSVEP-based BCIs (3). Currently, there is 
a lack of computational models of SSVEPs 
for the specific purpose of designing a BCI. 
Therefore, we wanted to explore the potential 
for creating an efficient computational model 
to improve the performance of SSVEP-based 
BCIs.

We have proposed a computational 
model of SSVEPs that jointly considers the 
incoming stimulus signal and the resulting 
SSVEP responses (Figure 2B). Given a stimulus 
frequency, ƒ0, and an initial phase, φ0, the 
stimulus signal can be described as follows:

       x(t) = sin(2πƒ0t + φ0)   0 ≤ t ≤ T

where T is the stimulus duration. The scalp-
recorded EEG responses to the stimulus consist 
of SSVEPs, spontaneous EEG signals, and other noise 
(such as muscle artifacts and power line interference). We 
use the following model to describe SSVEPs recorded on 
the scalp: 

The evoked SSVEP signals consist of multiple 
sinusoidal components at the stimulation frequency 
and its harmonic frequencies. The number of harmonics 
NH can be determined by the stimulus frequency and 
the upper-bound frequency of the responses (4). In our 
recent study, SSVEP harmonics were clearly observed 
within the frequency range that showed an upper-
bound frequency around 90Hz (5). τAL is the visual delay 
between the stimulus and the SSVEP response (6). τVP 
is the duration for which a response persists following 
a stimulus. The amplitude and phase of each harmonic 
component are specified by ak and φk, respectively. 
Generally, the amplitude of the harmonics decreases 
when the frequency of the harmonics increases. The 
phase for each harmonic component can be considered 
as a constant. However, the relationship between the 
stimulus phases and harmonic phases still remains 
unknown due to a lack of information about how the 
SSVEP harmonics are generated. For simplicity, other 
nonevoked signals are considered as noise and simplified 
as n(t) in the model. Here we only focus on modeling the 
evoked SSVEP signals.

      

FIGURE 1. A steady-state visual evoked potential (SSVEP)-based brain-
computer interface (BCI). (A) Example of SSVEP recordings in response to 
periodic visual stimuli. Fundamental and harmonic frequency components 
make up the SSVEP spectrum. (B) System diagram of an SSVEP-based BCI 
speller. Subjects focus on one letter at a time; each letter flickers at different 
frequencies. Once the specific frequency component is identified via the 
electroencephalogram (EEG) recorder, the corresponding letter appears on 
the screen. 

between the stimulus and the SSVEP response in the visual 
pathway (6). A stable visual delay found in our recent study 
(7) suggests that phase tracking of SSVEPs is feasible and 
practical. A phase-tagging technique in which multiple 
visual targets are tagged with different phases at the same 
frequency (see Figure 3B) can be developed. It was noted 
that the phases of the harmonic SSVEP components could 
also be used for phase tracking. In recent BCI studies, the 
combination of frequency tracking and phase tracking 
was shown to be more efficient than either one alone (7). 
However, since the phase values of SSVEPs vary over time, 
phase tracking requires precise synchronization between 
the stimulus signals and the resulting SSVEPs.

Attention tracking
In addition to frequency tracking and phase tracking, 

attention tracking is another approach that employs SSVEP 
modulation. Overt attention (i.e., attending to the target 
by moving the eyes) and covert attention (i.e., mentally 
attending to the target without moving the eyes, see Figure 
3C) impact SSVEPs in different ways (8). Specifically, one 
study of visual attention has shown that both the amplitude 
and phase of SSVEPs are modulated by covert attention 
(9). Therefore, attention tracking can be performed by 
measuring the amplitude and phase of SSVEPs. Attention 
tracking has been applied in BCI research to implement 
independent SSVEP-based BCIs that do not require eye 
movements to operate the system (2).

Guidance for design and implementation
of SSVEP-based BCIs

Information transfer from stimulus to SSVEPs
To design BCI models, the relationship between the 

stimulus and SSVEP responses must be taken into account. 

Further, the SSVEP 
model proposed 
above emphasizes that 
the transferability of 
information from the 
stimulus to SSVEPs is 
an important principle 
to consider when 
designing an SSVEP-
based BCI. The stable 
visual delay in the 
visual pathway ensures 
that the properties of 
the stimulus signals 
are carried through to 
the resulting SSVEP 
responses. For example, 
two stimuli with the 
same frequency and 
a 180-degree phase 
difference can result 
in two SSVEP signals 
that are negatively 
correlated (i.e., with a 

correlation coefficient of –1). Therefore, optimization of the 
stimulus signals can be used as a proxy for optimization 
of BCI performance. In this case, advanced target coding 
technologies such as multiple access (MA) methods in 
telecommunications, which allow multiple data streams to 
share the same communication channel, can be applied to 
improve the performance of SSVEP-based BCIs (1). 

Framework for design and implementation 
of SSVEP-based BCIs

Based on our computational model of SSVEP, we have 
further proposed a general framework for the design and 
implementation of an SSVEP-based BCI. The framework, 
which can provide a highly efficient roadmap for the 
design of an SSVEP-based BCI, consists of three major 
procedures: benchmark dataset collection, offline system 
design, and online system implementation. Theoretically, 
the ability to ascertain SSVEPs directly from the stimulus 
data enables a system to be designed without real 
SSVEP data. However, due to the potential interference 
of SSVEP harmonics, assessing BCI performance using 
real SSVEP data will likely be more accurate. Our recent 
studies have shown comparable performance in offline 
and online BCI experiments (5, 7). Therefore, simulating 
an offline BCI system with a benchmark SSVEP dataset 
is a simple and efficient way to design an SSVEP-based 
BCI. Certain characteristics of the stimulation signals 
(such as frequency, phase, and stimulation duration) can 
be simulated without the need for new data collection. 
Furthermore, within this framework, the stimulus coding 
and target identification methods can be tested jointly to 
achieve optimal BCI performance and, once optimized in 
the offline system design, they can be implemented in an 
online BCI system. This process can significantly facilitate 
the design of SSVEP-based BCIs.

FIGURE 2. 
Computational 
model of the 
steady-state visual 
evoked potential 
(SSVEP). (A) A 
computational 
model of SSVEP 
is a mathematical 
formula describing 
the relationship 
between visual 
stimuli and brain 
responses. x(t) is 
the stimulus signal 
and y(t) is the 
SSVEP response. 
(B) An example 
of a periodic visual stimulus (red line) and the resulting SSVEP (blue line) at 12Hz. T is the stimualtion 
duration. φ0 is the initial phase of the stimulus signal. τAL is the visual delay between the stimulus and 
the SSVEP response. τVP is the duration for which a response persists following a stimulus.
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The stimulus coding and target identification methods 
play important roles in optimizing the performance of 
SSVEP-based BCIs. Advanced stimulus coding methods 
(e.g., mixed frequency and phase coding) can significantly 
improve the coding efficiency (7). Target identification 
methods typically consist of signal processing and 
machine learning algorithms that can be applied to extract 
frequency and phase information of SSVEP. Under the 
computational model described above, selections of 
frequency band and time window are crucial for feature 
extraction (5). In addition, SSVEP training data can be used 
to improve target identification using machine learning 
techniques (7). Furthermore, information of SSVEPs from 
previous sessions and other subjects can be used to 
facilitate the training procedure in BCI operation (10). 
Another important factor affecting BCI performance is user 
attention. During BCI operation, visual attention needs to 
be maintained at a high level so that SSVEP parameters are 
stable across multiple trials.

Example application of high-speed BCI speller
We recently developed a high-speed BCI speller 

based on the system framework described above (5). The 
40-character speller (see Figure 1B) used a frequency-
coding diagram (frequency range: 8–15.8Hz; frequency 
interval: 0.2Hz). The three major procedures in system 
design and implementation were as follows: First, a 
benchmark SSVEP dataset was collected from 12 subjects 
in an offline BCI experiment. Second, the dataset was used 
for offline system design. The proposed computational 
model of SSVEPs suggested that the harmonic SSVEP 
components could provide valuable information for use 
in frequency detection. A filter bank canonical correlation 
analysis approach was developed to extract independent 
features from the fundamental and harmonic SSVEP 
components. The parameters of the filter bank and the 
classifier were optimized through evaluating offline BCI 

performance using the benchmark dataset. At the same 
time, the stimulus duration was optimized toward the 
highest ITR. Third, an online BCI speller, using the same 
parameters obtained from the offline system design, was 
implemented using a different group of 10 subjects. The 
online speller demonstrated an average ITR of 151 bits/
min, to our knowledge one of the highest ITRs reported 
in BCIs. This example application demonstrates the 
efficacy of the proposed computational model of SSVEP in 
improving the performance of SSVEP-based BCIs.

  References
  1. 	 S. Gao, Y. Wang, X. Gao, B. Hong, IEEE Trans. Biomed. Eng. 	
	 61, 1436 (2014).
  2. 	 F. B. Vialatte, M. Maurice, J. Dauwels, A. Cichocki, Prog. 		
	 Neurobiol. 90, 418 (2010).
  3. 	 O. Friman, I. Volosyak, A. Graser, IEEE Trans. Biomed. Eng. 54, 	
	 742 (2007).
  4. 	 C. S. Herrmann, Exp. Brain Res. 137, 346 (2001).
  5. 	 X. Chen, Y. Wang, S. Gao, T. P. Jung, X. Gao, J. Neural Eng. 12, 	
	 046008 (2015). 
  6. 	 D. Regan, Human Brain Electrophysiology: Evoked Potentials 	
	 and Evoked Magnetic Fields in Science and Medicine 		
	 (Elsevier, New York, 1989).
  7. 	 M. Nakanishi, Y. Wang, Y. T. Wang, Y. Mitsukura, T. P. Jung, Int. 	
	 J. Neural Syst. 24, 1450019 (2014).
  8. 	 S. Walter, C. Quigley, S. K. Andersen, M. M. Mueller, Neurosci. 	
	 Lett. 519, 37 (2012).
  9. 	 F. D. Russo, D. Spinelli, Vision Res. 39, 2975 (1999).
10. 	P. Yuan, X. Chen, Y. Wang, X. Gao, S. Gao, J. Neural Eng. 12, 	
	 046006 (2015). 

Acknowledgments
This work was supported by the National Natural Science 
Foundation of China (61431007), the National Basic Research 
Program of China (973 Program) (2011 CB933204), the National 
High-Tech R&D Program of China (863 Program) (2012AA011601), 
and the Recruitment Program for Young Professionals.

      

tracking: Multiple targets correspond to different attending locations or features. For example, attending to the right-side stimulus (S2) 
can lead to enhanced amplitude of SSVEPs at f2. 

FIGURE 3. 
Approaches to 
modulate steady-
state visual 
evoked potentials 
(SSVEPs). (A) 
Frequency tracking: 
Multiple targets 
are tagged with 
different flickering 
frequencies. (B) 
Phase tracking: 
Multiple targets 
are tagged with 
different phases at 
the same frequency. 
(C) Attention 

Using a scale-free method 
to convert brain activity 
into music

Jing Lu1, Dan Wu1,2, Dezhong Yao1,3*

Music can create experiences that can be 
shared by humans. Emotional expression and com-
munication through music are strongly linked to health 
and well-being (1, 2). For many years, musicologists and 

1Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science 
and Technology, University of Electronic Science and Technology of China, Chengdu, 
China
2Department of Biomedical Engineering, School of Computer and Information 
Technology, Beijing Jiaotong University, Beijing, China
3Center for Information in Medicine, University of Electronic Science and Technology 
of China, Chengdu, China
*Corresponding Author: dyao@uestc.edu.cn

FIGURE 2. The score 
of a piece of music 
translated from the 
brain signals of (A) the 
female patient with 
Alzheimer’s disease 
and (B) the healthy 
5-year-old child.

scientists have attempted to uncover the relationship 
between music and the human experience. In recent 
years, musicians have been considered as an outstand-
ing model for studying the operations of the human 
brain and in particular, the effect of music on brain func-
tions (3–6). We carried out an inverse study of sorts, in 
which we recorded brain activity and converted the data 
into music. In 2009, we proposed a scale-free method 
(7) to translate electroencephalogram (EEG) data into 
music. The translation is based on the scale-free proper-
ties followed by both music and EEGs. Thereafter, we 
developed a series of scale-free methods for converting 
brainwaves (EEG recordings) into music (called “brain-
wave music”) that represents different states of brain 
activity, such as eyes open and eyes closed for healthy 
people, and the moment of seizure onset for patients 
with epilepsy (8–10).

FIGURE 1. Paradigm 
used for translating 
electroencephalogram 
(EEG) data into music 
(7). The amplitude, 
waveform period, 
and average power 
are mapped to pitch, 
duration, and volume, 
respectively. The piano 
was chosen for the 
timbre. The mappings 
from amplitude to pitch 
are based on the scale-
free law (power law).

Recently, we evaluated brainwave music for two 
subjects: a healthy, 5-year-old child, and an 80-year-old 
female patient with Alzheimer’s disease. We collected 
their EEG data using an electrode cap with 64 silver/silver 
chloride electrodes, connected using the established 
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10–20 system of electrode placement, and digitized the 
recording using a sampling rate of 500 Hz. The impedance 
for all electrodes was kept below 5kΩ and all the data 
were band-pass filtered (0.01–100 Hz) online using 
software from Brain Products GmbH (Starnberg, Germany; 
www.brainproducts.com). The recorded EEG data was 
translated offline to reference at infinity with Reference 
Electrode Standardization Technique (REST) software 
(http://www.neuro.uestc.edu.cn/rest/) (11). Participants 
gave informed consent before the experiment was 
conducted, in accordance with the established guidelines 
of the Ethics Committee of the School of Life Science and 
Technology at the University of Electronic Science and 
Technology of China.

We translated the brainwaves (EEGs) into music for both 
subjects using the method shown in Figure 1. We were 
surprised that the music created from the two subjects 
showed similar tempo and rhythm, and both recordings 
could be described as “peaceful” (Figure 2). Considering 
that this brainwave music can reflect a person’s state of 
mind (8–10), we suggest that the elderly female subject 
and the child were possibly sharing similar intrinsic states 
at the moment of the recordings. This aligns with the 
ancient Chinese saying that “an old man may experience 
the same state of mind as a child,” a state that music may 
elicit since it can affect human feelings. 

In summary, scale-free brainwave music, a musical 
representation of brainwave activity, may provide a new 
way to peer inside the “heart” of the brain, or provide a 
new emotional brain-computer interface, as described 
in our previously published work (7–10). However, to 
find evidence to further support the idea that music may 
enable “an old man to experience the same state of mind 
as a child,” additional research must be performed with a 
larger number of subjects. Overall, brainwave music may 
help us better understand some of the basic mechanisms 
within the brain and may be applicable for monitoring 
brain states, for use as an emotional brain-computer 
interface, or as a method of clinical rehabilitation (such 
as music therapy). However, additional work is needed to 
fully elucidate its underpinnings.
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Estimating biosignals 
using the human voice 

Eduardo Coutinho and Björn Schuller*

Computational paralinguistics (CP) is a relatively 
new area of research that provides new methods, tools, 
and techniques to automatically recognize the states, 
traits, and qualities embedded in the nonsemantic aspects 
of human speech (1). In recent years, CP has reached 
a level of maturity that has permitted the development 
of a myriad of applications in everyday life, such as the 
automatic estimation of a speaker’s age, gender, height, 
emotional state, cognitive load, personality traits, likability, 
intelligibility, and medical condition (2). Here, we provide 
an overview of one particular application of CP that offers 
new solutions for health care—the recognition of physi-
ological parameters (biosignals) from the voice alone. 

Unintrusive and pervasive monitoring
Currently, there are a variety of portable medical 

devices enabling patients to actively monitor the relevant 
factors contributing to their diagnosis and treatments. 
These devices are particularly important when frequent 
monitoring (daily or several times a day) is required for the 
adequate treatment and detection of symptoms, especially 
for patients with limited mobility and difficulties accessing 
medical facilities. Further, these technologies help 
address the shortage of qualified medical staff needed to 
adequately monitor patients, which can lead to delays in 
obtaining appropriate feedback and treatment. 

The technologies currently available include those 
that measure heart rate, blood volume pressure, body 
temperature, respiration rate, and other physiological 
parameters. Such devices can be quite expensive and 
complicated for older patients and those with limited 
mobility, and often inconvenient for everyday use. Ideally, 
monitoring biosignals should be unobtrusive, not require 
additional electronic devices, and require minimal effort 
from the patient. Most importantly, monitoring should be 
easy to perform in emergency situations. 

Computers or mobile phones are thus an obvious 
choice due to their abundance and their computational 
power, which is sufficient to acquire and analyze 
biosignals (3–5). If such devices are to be used, the signal 
being measured must be one that can be recorded 
without the need for additional equipment. Audio 
and video signals fit these criteria, as both have been 
previously used to estimate a variety of biosignals. For 
instance, video analysis of the skin can detect subtle 
color shifts triggered by physiological changes (such 
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as cardiac rhythm or blood flow) (6–8). In the case of 
the human voice, physiological changes are detectable 
through vocalizations because both the larynx (where 
the vocal cords are located) and the pharynx (above 
the larynx) are controlled by the autonomic nervous 
system, which regulates blood pressure, heart rate, and 
perspiration (9–12). 

Voice-based biosignal estimation presents a major 
advantage over video-based sensing, because audio 
acquisition is less limiting than video in that it does 
not need to be directed toward or be in contact with 
a patient’s skin, and it can be used in a wider range of 
conditions (for instance, in the dark when video cannot be 
captured). This is of particular relevance in crisis situations, 
when additional sensors or the ideal conditions for 
adequate video analysis are not available. In such cases, 
by simply asking for medical assistance, vital information 
about the patient could be automatically collected and 
used to inform diagnosis and treatment. 

Voice-based physiological monitoring
In a recent and comprehensive attempt to estimate 

biosignals from the voice alone (13), we evaluated the 
estimation of two biosignals—heart rate (HR) and skin 
conductance (SC)—and the classification of pulse level 
(high pulse/low pulse; HP/LP) using acoustic features 
extracted from audio recordings. We designed an 
empirical study to collect subjects’ HR and SC from 19 
subjects (4 female; 15 male). In addition, we obtained 
audio recordings of breathing sounds and from the 
repeated pronunciation of the sustained vowel “a.” The 
recordings were collected in two pulse-level states: a 
“neutral” state (characterized by a low pulse), and a high-
pulse state, which was induced by asking subjects to run 
up and down six flights of stairs (three stories) and down 
a hallway immediately prior to the recording. In order to 
evaluate the influence of the sound recording conditions, 
audio recordings were obtained with two different 
devices: a high-quality sound recorder (“ambient”) and 
a common, commercially available headset (“headset”). 

The full database consists of 1,420 audio recordings (and 
concomitant HR and SC recordings). 

The audio recordings were analyzed using the 
openSMILE (Speech and Music Interpretation by Large 
Space Extraction) software toolkit (14), which was used 
to extract a large set of acoustic descriptors. These 
descriptors included 4,368 acoustic features comprising 
a variety of energy-, spectral-, and voice-related 
information, which was used to develop computational 
models that predict SC, HR, and pulse level using state-
of-the-art machine learning regression (to determine the 
exact value of SC and HR) and classification techniques 
(to determine pulse level, either high or low). These 
computational models were created for individual 
speakers (IS) and multiple speakers (MS), i.e., using the 
recordings from all speakers to generate a model that 
can be applicable to any speaker rather than a specific 
speaker. The models’ performances in the regression 
tasks were estimated using Pearson’s linear correlation 
coefficient (CC) and the mean absolute error (MAE). For 
the classification of pulse levels, the performance was 
estimated using the unweighted accuracy [UA, i.e., the 
unweighted arithmetic mean of the number of correctly 
identified pulse levels in each condition (HP or LP)]. A 
summary of the results is shown in Table 1. 

Next, we evaluated whether voice recordings could be 
used to identify pulse level and estimate SC and HR values. 
The results demonstrated that one’s pulse level could be 
correctly identified with an accuracy as high as 84.1% of 
the IS model (ambient microphone audio recordings of 
breathing). Furthermore, HR and SC regression analysis 
showed that the best linear correlation coefficients were 
0.861 [MAE of 8.1 beats per minute (BPM); IS model 
using the sustained vowels audio recordings obtained 
with an ambient microphone] and 0.978 [MAE of 84.4 
micromhos (μMhO); IS model using the sustained vowels 
audio recordings obtained with a headset microphone)], 
respectively. We drew three main conclusions from the 
results. First, common microphones are a viable option for 
estimating biosignals from the voice, as the performance 

Recording 
condition

Recording 
device

Pulse level 
(HP/LP) Heart rate (HR) Skin conductance (SC)

Model type UA 
(%)

  CC               MAE
(BPM)

CC                     MAE
 (μMhO)

Sustained 
vowels

Headset
IS 83.1 0.809 8.4 0.978 84.4

MS 79.6 0.770 10.6 0.891 265.3

Ambient
IS 82.7 0.861 8.1 0.960 88.2

MS 76.0 0.574 11.7 0.633 311.2

Breathing 
periods

Headset
IS 84.1 0.722 10.7 0.908 153.7

MS 78.6 0.629 13.1 0.632 469.7

Ambient
IS 81.9 0.718 10.6 0.905 165.3

MS 72.9 0.521 14.8 0.483 570.8
TABLE 1. Results for the automatic regression of heart rate (HR), skin conductance (SC), and classification of pulse level (HP: high pulse;  
LP: low pulse). IS: individual speakers; MS: multiple speakers; UA: unweighted accuracy; CC: Pearson’s linear correlation coefficient; 
MAE: mean absolute error. Table adapted from (13).
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was comparable for both microphone types. Second, 
both types of recording conditions—sustained vowels 
and breathing sounds—led to similar classifications of 
the subjects’ pulse level, although the use of sustained 
vowels was slightly better than breathing sounds for 
the regression experiments (13). In another study, we 
evaluated which acoustic features would be best suited 
for estimating biosignals. The results showed that with an 
optimized set of 150 acoustic features, a subject’s pulse 
level could be accurately determined, with a UA of 91.4% 
and correlation coefficients of 0.876 for SC and 0.838 
for HR (but only when using 100 acoustic features for the 
analysis, not 150) (15). 

The dataset used in our work—the Munich BioVoice 
corpus (MBC)—has been made publicly available (15) 
and was used in the Interspeech 2014 Computational 
Paralinguistics Challenge (2). Competing teams were 
asked to classify HP/LP based on freely chosen features 
extracted from voice recordings of text that was read after 
exercise or under resting conditions. The winning team 
achieved an accuracy of 75.3% (16).

Conclusions and perspectives 
Taken together, our studies have shown that audio 

recordings of a person’s breathing, pronunciation of 
sustained vowels, and reading of text can be used to 
predict biosignals. Gathering such information from voice 
recordings has a lot of potential use for technologies 
that require noninvasive, passive collection methods. For 
instance, a mobile phone could be used to continuously 
or periodically record a subject’s voice (with or without 
speech) without the need for user intervention. This would 
require little or no effort from the user and be well suited 
to patients with limited mobility or in emergency situations 
when user intervention is not possible. 

However, the use of audio recordings to estimate 
biosignals is still in its infancy and has a lot of room for 
improvement. For example, the data from this technology 
is still less accurate than what can be obtained by using 
dedicated medical equipment, and more research 
is needed to improve its quality. Furthermore, the 
technology would gain from research on which acoustic 
and vocal features are optimal to use, from exploration of 
more powerful modeling paradigms, from the calibration 
of models based on individual differences in physiological 
activity, and from the acquisition of larger data sets for 
refining speaker-independent models. Finally, this type 
of research would benefit from more attention from the 
speech community and from the application of state-of-
the-art machine learning techniques.

In summary, our studies have found that audio-based 
recognition has the potential to be used as a software 
application on mobile phones and computers for remote 
monitoring of HR and SC. One advantage of using such 
audio recordings is that analyses could be performed 
in an atemporal fashion, e.g., using past recordings 
to investigate a patient’s history and their condition’s 
evolution over the period that preceded diagnosis and 
treatment. If the technology is further improved, it could 

be used for passive, noncontact monitoring of patients, 
which would require minimum attendance by its user and 
improve the quality of life for many people. 
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Ecological validity: 
Predicting psychological 
profiles using Internet 
behavior

Nan Zhao1, Ang Li2,3, Tianli Liu4, 
Qinglin Zhao5, Baobin Li6, Tingshao Zhu1,7*

The validity of psychological studies depends on 
the quality of the behavioral, physiological, and biological 
data collection. Traditionally, such data has been collected 
through laboratory experiments, whereby experimental 
parameters are rigorously controlled, yet require intrusive 
and artificial conditions (1). In contrast, the “ecological” 
discipline of psychological research maintains that such 
data are subject to inaccuracies, and proposes to collect 
data in real-world settings. 

In the past, acquiring data in “real life” has been 
difficult and ineffective. However, rapid developments 
in information technology have brought about profound 
changes in data collection. The data revolution now 
enables collection of real-life data efficiently in several 
complementary ways. First, Web 2.0 technologies, 
such as social networking sites, blogs, and other types 
of social media have achieved global popularity and 
use. Users’ personal profiles, self-expression, and 
daily communication can be recorded automatically 
(2). Second, the popularity of mobile devices, such as 
smartphones and tablets, makes it possible to integrate 
data with the location and time signatures of users (3). 
Through installed apps, mobile devices can record a 
high level of detail about individuals’ behavior across 
different settings and situations encompassing their daily 
lives. Third, wearable devices, such as smart glasses, 
watches, and bracelets, are now the subject of constant 
innovation and have been increasingly accepted by 
consumers. These devices perform daily monitoring and 
recording of behavioral and physiological data, such as 
body movements, heart rate, body temperature, and 
even neural activity, making it possible to collect real-life 
data for any given individual. Thus psychological data 
collection is no longer limited to particular situations in a 
laboratory setting.

Since such Internet-mediated data collection is not built 
on well-designed experiments in the laboratory, it brings 
new challenges in processing large and unstructured data. 
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To address the problem, new data processing techniques, 
such as feature extraction and machine learning, have 
been introduced. Using such techniques, we have 
systematically examined the feasibility of identifying and 
predicting the psychological profiles of individuals based 
on real-life data acquired from social media, smartphones, 
and wearable devices. We have further expanded our 
analyses from the individual to the population level 
to further test the feasibility of acquiring dynamic 
psychological profiles of the broader public.

Predicting individual profiles using social 
media behaviors

We conducted research using one of the most popular 
Chinese social media platforms, Sina Weibo, which is 
similar to Twitter. We built computational models for 
predicting users’ personalities (4), mental health status 
(5, 6), and subjective well-being (5, 7) by acquiring and 
analyzing data on their Weibo behaviors. We recruited 
active Weibo users, based on their total and average 
everyday number of Weibo posts. With their consent, we 
then downloaded their Weibo posts and digital records 
of web-based activities and measured the following 
psychological features: their Big-Five personality traits 
[the personality structure composed of five dimensions, 
measured by the Big Five Inventory (BFI)] (8); depression 
and anxiety [by the depression and anxiety subscale of 
Symptom Checklist 90 (SCL-90)]; suicide probability [by 
Suicide Probability Scale (SPS)]; and subjective well-being 
[by the Positive and Negative Affect Schedule (PANAS) 
and the Scales of Psychological Well-Being (PWB)]. 
The sample size was between 444 (for depression and 
anxiety) (5) and 1,785 (for subjective well-being) (7).

We extracted four categories of features from the 
Weibo data to build computational models: (a) User 
profile and settings, including demographic information 
(such as age and gender) and account settings (such 
as username and privacy settings); (b) Weibo usage 
parameters, such as the number of individuals denoted 
as “followers” or “following,” the time period between 
updates, and the number of original or forwarded 
posts; (c) Weibo linguistic expression features, which 
are extracted using the Simplified Chinese version of 
LIWC (Linguistic Inquiry and Word Count) (9); and (d) 
deep learning features. Features a, b, and c—features 
which are both static and dynamic when sampled in a 
time series—contain a rich body of information about 
users’ mental profiles, which can be used for training 
prediction models. Meanwhile, they can also be put into 
deep learning models (a set of machine learning models 
for high-level abstraction of data) to construct deep 
learning feature matrices. Such features can also be used 
for training prediction models. After feature extraction, 
methods such as stepwise regression can be employed 
for feature selection.

To differentiate between groups with higher and lower 
scores on various personality traits or on the risk of suicide, 
we used algorithms such as support vector machine 
(SVM), simple logistic regression (SLR), and Random 



APPLICATIONS   5352  ADVANCES IN COMPUTATIONAL PSYCHOPHYSIOLOGY

state. We conducted a series of studies analyzing body 
movement data from Kinect 3D cameras, smartphones 
with built-in acceleration sensors attached to the wrist and 
ankle, and smart bracelets. Participants’ body movements 
were recorded by the three devices while walking under 
conditions that induced positive or negative emotional 
effects. We built computational models to classify 
emotional states as positive or negative using the features 
extracted from the body movement data. Our preliminary 
results indicate that the predictive accuracy of the models 
was above 70%.  

Predicting public profiles using social 
media behaviors

Social media provides an efficient way to detect 
public attitudes and thoughts because of its access to a 
large number of users. Understanding such trends is a 
potentially potent, albeit controversial, tool for defining 
public policy. Traditionally, conducting a questionnaire 
survey or interviews with a large number of respondents 
has been the preferred way of measuring public attitudes. 
However, public opinion polling is time consuming and 
costly, and it cannot monitor changes in public attitudes 
in real time. In contrast, information gained from studying 
social media can more directly and powerfully reflect 
public attitudes. 

Whereas direct statistics on social media parameters 
are already in place to profile changes in public attitudes 
(14), we have refined this concept with more elegant 
computational approaches. Using the techniques we 
previously used to predict individuals’ psychological 
profiles, we have developed methods to perceive 
public social attitudes through a large sample of Weibo 
behaviors (15). In this study, Weibo users from targeted 
regions were recruited and asked to complete a social 
attitude questionnaire about social stability in modern 
China (16). We performed the extraction and selection of 
Weibo features using the same methods as the individual 
mental profile predictions. We used algorithms such as 
multitask learning and incremental regression to train the 
prediction models. Based on this analysis, the average 
predictive accuracy for each aspect of social attitude was 
approximately 85%. Since Weibo behavior records are 
traceable, we can further divide Weibo data into time 
slices to acquire longitudinal data. More importantly, 
since Weibo data is continuously updated, it is feasible to 
track trends in public social attitudes in real time. Thus our 
trained model can be used for a larger segment of Weibo 
users to obtain profiles for an even larger proportion of 
the population. Such predictions could be an important 
reference for indicating the public social attitudes in the 
real world.

In summary, our work has shown the potential of using 
information technology and computational methods—such 
as feature extraction and machine learning—for obtaining 
and processing large quantities of real-life data from 
social media, mobile devices, and wearable devices. 
This Internet-mediated data can be used to predict the 
psychological profiles of individuals and the public. 

Forest (RF) to build classification models. For predicting 
continuous variables, such as scores on personality and 
subjective well-being, we built regression models such 
as pace regression, multivariate adaptive regression 
splines (MARS), and support vector regression (SVR). 
The predictive accuracy was fairly good, particularly 
for classification tasks. For example, the accuracy of 
distributing Weibo users into either high- or low-score 
groups for different personality types ranged from 84% 
to 92% through SVM (4). In addition, through SLR and RF, 
our model retrieved over 70% of the Weibo users labeled 
high-risk with overall suicide probability or with each of 
the four subscales of SPS (6). In terms of the performance 
for predicting continuous variables, the correlation 
coefficients between the predicted scores, which were 
achieved through pace regression, MARS or SVR, and 
questionnaire scores, generally reached a medium to 
strong level (0.48–0.60) (4, 7). We also implemented our 
strategy using data acquired from Renren, another well-
known social networking site that is similar to Facebook 
and widely used by Chinese students, and found the 
accuracy of predicting the individuals’ Big-Five personality 
traits were comparable with the Weibo data (10).

  
Predicting individual profiles using 
smartphone behaviors

To predict users’ mental profiles based on their 
behaviors on mobile devices, we employed an Android 
app called MobileSens, which records mobile behaviors 
and uploads the data to our server. Using this data, we 
conducted studies to predict psychological profiles for the 
Big Five personality traits, and for depression, interaction 
anxiousness, loneliness, and subjective well-being (11, 12). 
Three categories of behavioral features were extracted 
from original usage logs to train computational models. 
Those features included the frequency of use of (1) basic 
smartphone functions, such as dialing, texting, and GPS; 
(2) the most popular social apps, such as QQ, WeChat, and 
Sina Weibo; and (3) different categories of apps, such as 
communication, games, and health. We used a stepwise 
regression for feature selection and pace regression 
for training models. For agreeableness, extraversion, 
openness, subjective well-being, depression, and 
loneliness, we observed a moderate correlation (0.30–
0.48) between predicted scores and questionnaire scores; 
and the correlation coefficients were higher for females 
than males for nearly all of the measured psychological 
indices.

Predicting individual profiles using 
body movements

Smart bands have become a popular wearable device. 
Most contain a built-in three-axis acceleration sensor, 
which can precisely record the movements of the body 
part where it was worn, usually the wrist. There is evidence 
that an individual’s emotional state can be reflected 
in one’s own gait (13), therefore body movement data 
acquired from the acceleration sensor of a smart band 
can potentially be used to monitor the user’s emotional 

Many challenges exist, such as improving the accuracy 
of the predictions, ensuring that the sample of users 
represents the larger population, and maintaining the 
privacy of users. Nonetheless, our approach can bring 
about significant benefits—namely, building a system of 
psychological information with better ecological validity 
that can meet the needs of real-world applications. 
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Information Processing Laboratory 
Beijing Normal University

    The Information Processing Laboratory is located on the Beijing 
Normal University campus and managed by the university. The laboratory 
merges talented researchers from both the information technology and 
neuroscience groups. The lab’s research focus is on neuro-information 
processing and its application for brain-computer interfaces, neural 
decoding, neurofeedback, and mental health and disease.

    Since 2005, the laboratory has shown great success in scientific 
research and has acquired about 20 influential projects, such as the "863" 
Hi-tech project and various projects supported by the National Natural 
Science Foundation of China (NSFC) and the Beijing Natural Science 
Foundation. 

    The laboratory focuses on researching the underlying neural 
mechanisms and constructing computational models for the perception, 
expression, and processing of visual information. More specifically, 
the laboratory extends the neural coding/decoding model of visual 
information from 2D to 3D environments and aims to map the 
relationship between 3D environments and neural activity in the human 
brain.

    Further, scientists at the lab study the application of real-time functional 
magnetic resonance imaging (rt-fMRI) and electroencephalograph (EEG) 
neurofeedback for working memory enhancement training and the effect 
of adaptive neurofeedback. If interested in applying for a position, please 
e-mail: jiacai.zhang@bnu.edu.cn. 

    For more information: cist.bnu.edu.cn

Lab of Neural Engineering 
Tsinghua University

    The Lab of Neural Engineering was established in 2004 in the 
Department of Biomedical Engineering, School of Medicine, Tsinghua 
University. Neural engineering is an interdisciplinary research area at the 
interface of neuroscience and engineering. The mission of the lab is to 
develop a variety of engineering methods and tools for both fundamental 
neuroscience research investigating the mechanisms underlying 
neurological disorders and for developing clinical interventions. 

    Brain-computer interaction (BCI) is one of the major research areas in 
the lab. BCI is a direct communication pathway between the brain and 
an external device and has potential applications for neural rehabilitation 
(assisting, augmenting, or repairing neural functions in humans) and for 
the study of brain function and cognition. 

    Several novel EEG-based BCIs have been developed in the lab, 
including visual evoked potentials (VEP) and auditory evoked potentials 
(AEP) based systems. The newly developed BCI speller, based on 
steady-state visual evoked potentials (SSVEPs), shows an extremely 
high information transfer rate. With mature neural signal processing 
algorithms and the self-developed EEG data acquisition systems, BCI 
systems are beginning to approach practical applications step-by-step.

    Moreover, the lab’s research also focuses on neural spike and 
electrocorticogram (ECoG) signal processing for brain function analysis, 
neural feedback effects on neural rehabilitation training, and the role of 
attention/emotion in cognitive function analysis. 

    For more information: www.med.tsinghua.edu.cn

Institute of Affective and Social Neuroscience 
Shenzhen University

    The Institute of Affective and Social Neuroscience at Shenzhen 
University was established in June 2013. In May 2014, the Center for 
Brain Disorders and Cognitive Sciences was inaugurated, with Professor 
Yue-Jia Luo serving as the director of both the institute and the center. 
The current research team includes over 20 researchers and medical 
personnel from the three affiliated hospitals: Shenzhen’s Second People’s 
Hospital, Sixth People’s Hospital, and Kangning Hospital. The institute’s 
research covers cognitive neuroscience, psychology, neurology, and 
psychiatry. 

    Adopting an interdisciplinary approach, our researchers focus on 
the broad area of social cognitive neuroscience, including emotions, 
cognition, decision-making, and the related mental disorders. The 
institute’s goals are: to investigate mood disorders using techniques 
from multiple disciplines, including cognitive psychology, social 
psychology, neural electrophysiology, clinical psychiatry, and neurology; 
to understand the neural mechanisms underlying mental disorders and 
brain diseases; and to develop more advanced clinical treatments for such 
disorders. To achieve these goals, our scientists use a combination of 
methods including brain imaging, autonomic measures, and behavioral 
observation.

    Since June 2013, more than 50 research articles have been published 
in journals that have significant impact in the field, including the Journal 
of Neuroscience, Neuroimage, Human Brain Mapping, Social Affective 
& Cognitive Neuroscience, Neuropsychologia, Biological Psychology, 
Social Neuroscience, and Psychophysiology.

    Our institute has received strong support of the Shenzhen Municipal 
Government and Shenzhen University. We are planning to provide 
an exciting framework for researchers and students in the field of 
neuroscience, with the full gamut of cognitive and neuroscience-
related methodologies available in our lab. If interested in applying 
for a position, please submit your application and curriculum vitae to 
brainsci@szu.edu.cn.

    For more information: www.szu.edu.cn

Pervasive Computing Research Center
Chinese Academy of Sciences

    The Pervasive Computing Research Center (PCRC), established in 
2008, belongs to Institute of Computing Technology (ICT), Chinese 
Academy of Sciences. ICT is the first academic establishment to 
specialize in comprehensive research on computer science and 
technology in China. The PCRC carries out advanced research in 
pervasive computing, human-computer interaction, wearable computing, 
and e-health applications.

    In the 21st Century, the world faces a unique challenge: global aging. 
In recent years, PCRC's research, mainly on ambient-assisted living 
(AAL), technology has helped provide people with longer and healthier 
lives. Many national projects have been undertaken, including research 
on: unobtrusive, context-aware technologies for e-health applications; 
understanding and modeling human behavior; and a multitude 
of applications for monitoring devices, sensors, and other related 
innovations. PCRC has close collaborations with renowned scientists 
at universities around the world, including Princeton University, Hong 
Kong University of Science and Technology, Nanyang Technological 
University, Dartmouth College, College of William and Mary, and the 
University of Arizona, and at several well-known hospitals in China.

    Today, there are 21 faculty members and more than 70 Ph.D. and 
Master’s degree students in PCRC. The director, Professor Yiqiang 
Chen, is also the deputy director of the Beijing Key Laboratory of 
Mobile Computing and Pervasive Devices. He created the Chinese 
Sign Language Synthesis System, which has been used in 1,000 middle 
schools for the hearing impaired in China, in the 2008 Beijing Olympic 
Games, and in the 2010 Shanghai World Expo. He received the National 
Science and Technology Award (second level) in 2004 and was selected 
as the New Star Scientist of Beijing in 2005. 

    For more information: english.ict.cas.cn
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Program description
The National Basic Research Program of China (973 Program) focuses on innovative theories and 
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