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Abstract 22 

Cognitive control resolves conflict between task-relevant and -irrelevant information 23 

to enable goal-directed behavior. As conflict can arise from different sources (e.g., 24 

sensory input, internal representations), how a finite set of cognitive control processes 25 

can effectively address huge array of conflict remains a major challenge. We 26 

hypothesize that different conflict can be parameterized and represented as distinct 27 

points in a (low-dimensional) cognitive space, which can then be resolved by a 28 

limited set of cognitive control processes working along the dimensions. To test this 29 

hypothesis, we designed a task with five types of conflict that could be conceptually 30 

parameterized along one dimension. Over two experiments, both human performance 31 

and fMRI activity patterns in the right dorsolateral prefrontal (dlPFC) support that 32 

different types of conflict are organized in a cognitive space. The findings suggest that 33 

cognitive space can be a dimension reduction tool to effectively organize neural 34 

representations of conflict for cognitive control. 35 
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Introduction 40 

Cognitive control enables humans to behave purposefully by modulating neural 41 

processing to resolve conflict between task-relevant and task-irrelevant information. 42 

For example, when naming the color of the word “BLUE” printed in red ink, we are 43 

likely to be distracted by the word meaning, because reading a word is highly 44 

automatic in daily life. To keep our attention on the color, we need to mobilize the 45 

cognitive control processes to resolve the conflict between the color and word by 46 

boosting/suppressing the processing of color/word meaning. As task-relevant and 47 

task-irrelevant information can come from different sources, the sources of conflict 48 

and how they should be resolved can vary greatly1. For example, conflict may occur 49 

between items of sensory information, such as between a red light and a police officer 50 

signaling cars to pass. Alternatively, conflict may occur between sensory and motor 51 

information, such as when a voice on the left asks you to turn right. The large variety 52 

of conflict sources implies that there may be unlimited number of conflicts. A key 53 

unsolved question in cognitive control is how our brain efficiently resolves a nearly 54 

infinite number of different types of conflict. 55 

A first step to addressing this question is to examine the commonalities and/or 56 

dissociations across different types of conflict that can be categorized into different 57 

domains. Examples of the domains of conflict include experimental paradigm2,3, 58 

sensory modality4,5, or conflict type regarding the dimensional overlap of conflict 59 

processes6,7.  60 

Two solutions to resolving a wide range of conflict types are proposed. They 61 

differ based on whether the same cognitive control mechanisms are applied across 62 

domains. On the one hand, the domain-general cognitive control theories posit that 63 



the frontoparietal cortex adaptively encodes task information and can thus flexibly 64 

implement control strategies for different types of conflict. This is supported by the 65 

generalizable control adjustment (i.e., encountering a conflict trial from one type can 66 

facilitate conflict resolution of another type)2,8 and similar neural patterns9,10 across 67 

distinct conflict tasks. A broader domain-general view holds that the frontoparietal 68 

brain regions/networks are widely involved in multiple control demands well beyond 69 

the conflict domain11,12, which explains the remarkable flexibility in human behaviors. 70 

However, since domain-general processes are by definition likely shared by different 71 

tasks, when we need to handle multiple task demands at the same time, the efficiency 72 

of both tasks would be impaired due to resource competition or interference13. 73 

Therefore, the domain-general processes is evolutionarily less advantageous for 74 

humans to deal with the diverse situations requiring high efficiency14. On the other 75 

hand, the domain-specific theories argue that different types of conflict are handled by 76 

distinct cognitive control processes (e.g., where and how information processing 77 

should be modulated)15,16. However, according to the domain-specific view, the 78 

potentially unlimited conflict situations require a large variety of preexisting control 79 

processes, which is biologically implausible17.  80 

To reconcile the two theories, researchers recently proposed that cognitive control 81 

might be a mixture of domain-general and domain-specific processes. For instance, 82 

Freitas et al.18 found that trial-by-trial adjustment of control can generalize across two 83 

conflict domains to different degrees, leading to domain-general (strong 84 

generalization) or domain-specific (weak or no generalization) conclusions depending 85 

on the task settings of the consecutive conflict. Similarly, different brain networks 86 

may show domain-generality (i.e., representing multiple conflicts) or domain-87 

specificity (i.e., representing individual conflicts separately)7,19. Even within the same 88 

brain area (e.g., medial frontal cortex), Fu et al.20 found that the neural population 89 

activity can be factorized into orthogonal dimensions encoding both domain-general 90 

and domain-specific conflict information, which can be selectively read out by 91 

downstream brain regions. While the mixture view provides an explanation for the 92 

contradictory findings21, it suffers the same criticism as domain-specific cognitive 93 

control theories, as it still requires unlimited cognitive control processes to fully cover 94 

all possible conflicts. 95 

A key to reconciling domain-general and domain-specific cognitive control is to 96 

organize the nearly infinite possible types of conflict using a system with limited, 97 

dissociable dimensions. A construct with a similar function is the cognitive space22, 98 

which extends the idea of cognitive map23 to the representation of abstract 99 

information. Critically, the cognitive space view holds that the representations of 100 

different abstract information are organized continuously and the locations of 101 

representations in the cognitive space are determined by the similarity among the 102 

represented information22.  103 

In the human brain, it has been shown that abstract23,24 and social25 information 104 

can be represented in a cognitive space. For example, social hierarchies with two 105 

independent scores (e.g., popularity and competence) can be represented in a 2D 106 

cognitive space (one dimension for each score), such that each social item can be 107 



located by its score in the two dimensions25. In the field of cognitive control, recent 108 

studies have begun to conceptualize different control states within a cognitive space26. 109 

For example, Fu et al.20 mapped different conflict conditions to locations in a 110 

low/high dimensional cognitive space to demonstrate the domain-general/domain-111 

specific problems; Grahek et al.27 used a cognitive space model of cognitive control 112 

settings to explain behavioral changes in the speed-accuracy tradeoff. However, the 113 

cognitive spaces proposed in these studies were only applicable to a limited number 114 

of control states involved in their designs. Therefore, it remains unclear whether there 115 

is a cognitive space that can explain an unlimited number of control states, similar to 116 

that of the spatial location22 and non-spatial knowledge23. A challenge to answering 117 

this question lies in how to construct control states with continuous levels of 118 

similarity. Our recent work28 showed that it is possible to manipulate continuous 119 

conflict similarity by using a mixture of two independent conflict types with varying 120 

ratios, which can be used to further examine the behavioral and neural evidence for 121 

the cognitive space view. It is also unclear how the cognitive space of cognitive 122 

control is encoded in the brain, although that of spatial locations and non-spatial 123 

abstract knowledge has been relatively well investigated in the medial temporal lobe, 124 

medial prefrontal and orbitofrontal system22,23. Recent research has suggested that the 125 

abstract task structure could be encoded and implemented by the frontoparietal 126 

network29,30, but whether a similar neural system encodes the cognitive space of 127 

cognitive control remains untested. 128 

We hypothesize that different types of conflict are represented as points in a 129 

cognitive space. The dimensions in the cognitive space of conflict can be the 130 

aforementioned domains, in which domain-specific cognitive control processes are 131 

defined. For a specific type of conflict, its location in the cognitive space can be 132 

parameterized using a limited number of coordinates, which reflect how much control 133 

is needed for each of the domain-specific cognitive control processes. The cognitive 134 

space can also represent different types of conflict with low dimensionality26,31. 135 

Different domains can be represented conjunctively in a single cognitive space to 136 

achieve domain-general cognitive control, as conflict from different sources can be 137 

resolved using the same set of cognitive control processes. We further hypothesize 138 

that the cognitive space representing different types of conflict may be located in the 139 

frontoparietal network due to its essential roles in conflict resolution20,32 and abstract 140 

task representation30. 141 

In this study, we adjusted the paradigm from our previous study28 by including 142 

transitions of trials from five different conflict types, which enabled us to test if these 143 

conflict types are organized in a cognitive space (Fig. 1A). Specifically, on each trial, 144 

an arrow, pointing either upwards or downwards, was presented on one of the 10 145 

possible locations on the screen. Participants were required to respond to the pointing 146 

direction of the arrow (up or down) by pressing either the left or right key. 147 

Importantly, conflict from two sources can occur in this task. On one hand, the 148 

vertical location of the arrow can be incongruent with the direction (e.g., an up-149 

pointing arrow on the lower half of the screen), resulting spatial Stroop conflict6,33. 150 

On the other hand, the horizontal location of the arrow can be incongruent with the 151 



response key (e.g., an arrow requiring left response presented on the right side of the 152 

screen), thus causing Simon conflict33,34. As the arrow location rotates from the 153 

horizontal axis to the vertical axis, spatial Stroop conflict increases, and Simon 154 

conflict decreases. Therefore, the 10 possible locations of the arrow give rise to five 155 

conflict types with unique blend of spatial Stroop and Simon conflict28. As the 156 

increase in spatial Stroop conflict is perfectly correlated with the decrease in Simon 157 

conflict, we can use a 1D cognitive space to represent all five conflict types.  158 

 159 

Fig. 1. Experimental design. (A) The left panel shows the orthogonal stimulus-response mappings of 160 

the two participant groups. In each group the stimuli were only displayed at two quadrants of the 161 

circular locations. One group were asked to respond with the left button to the upward arrow and with 162 

the right button to the downward arrow presented in the to-left and bottom-right quadrants, and the 163 

other group vice versa. The right panel shows the time course of one example trial. The stimuli were 164 

displayed for 600 ms, preceded and followed by fixation crosses that lasted for 1400 ms in total. (B) 165 

Examples of the five types of conflict, each containing congruent and incongruent conditions. The 166 

arrows were presented at locations along five orientations with isometric polar angles, in which the 167 

vertical location introduces the spatial Stroop conflict, and the horizontal location introduces the Simon 168 

conflict. Dashed lines are shown only to indicate the location of arrows and were not shown in the 169 

experiments. (C) The definition of the angular difference between two conflict types and the conflict 170 

similarity. The angle θ is determined by the acute angle between two lines that cross the stimuli and the 171 

central fixation. Therefore, stimuli of the same conflict type form the smallest angle of 0, and stimuli 172 



between Conflict 1 and Conflict 5 form the largest angle of 90°, and others are in between. Conflict 173 

similarity is defined by the cosine value of θ.  174 

 175 

One way to parameterize (i.e., defining a coordinate system) the cognitive space 176 

is to encode each conflict type by the angle of the axis connecting its two possible 177 

stimulus locations (Fig. 1B). Within this cognitive space, the similarity between two 178 

conflict types can be quantified as the cosine value of their angular difference (Fig. 179 

1C). If the conflict types are organized as a cognitive space in the brain, the similarity 180 

between conflict types in the cognitive space should be reflected in both the behavior 181 

and similarity in the neural representations of conflict types. Our data from two 182 

experiments using this experimental design support both predictions: using behavioral 183 

data, we found that the influence of congruency (i.e., whether the task-relevant and 184 

task-irrelevant information indicate the same response) from the previous trial to the 185 

next trial increases with the conflict similarity between the two trials. Using fMRI 186 

data, we found that more similar conflict showed higher multivariate pattern similarity 187 

in the right dorsolateral prefrontal cortex (dlPFC).  188 

 189 

Results 190 

Conflict type similarity modulated behavioral congruency sequence effect (CSE) 191 

Experiment 1. 192 

We conducted a behavioral experiment (n = 33, 18 females) to examine how CSEs 193 

across different conflict types are influenced by their similarity. First, we validated the 194 

experimental design by testing the congruency effects. All five conflict types showed 195 

robust congruency effects such that the incongruent trials were slower and less 196 

accurate than the congruent trials (Note S1; Fig. S1 A/B). To test the influence of 197 

similarity between conflict types on behavior, we examined the CSE in consecutive 198 

trials. Specifically, the CSE was quantified as the interaction between previous and 199 

current trial congruency and can reflect how (in)congruency on the previous trial 200 

influences cognitive control on the current trial35,36. It has been shown that the CSE 201 

diminishes if the two consecutive trials have different conflict types37-39. Similarly, we 202 

tested whether the size of CSE increases as a function of conflict similarity between 203 

consecutive trials. To this end, we organized trials based on a 5 (previous trial conflict 204 

type) × 5 (current trial conflict type) × 2 (previous trial congruency) × 2 (current trial 205 

congruency) factorial design, with the first two and the last two factors capturing 206 

between-trial conflict similarity and the CSE, respectively. The cells in the 5 × 5 207 

matrix were mapped to different similarity levels according to the angular difference 208 

between the two conflict types (Fig. 1C). As shown in Fig. 2, the CSE, measured in 209 

both reaction time (RT) and error rate (ER), scaled with conflict similarity. 210 

To test the modulation of conflict similarity on the CSE, we constructed a linear 211 

mixed effect model to predict RT/ER in each cell of the factorial design using a 212 

predictor encoding the interaction between the CSE and conflict similarity (see 213 

Methods). The results showed a significant effect of conflict similarity (RT: β = 0.10 214 



± 0.01, t(1978) = 15.82, p < .001, ηp
2
 = .120; ER: β = 0.15 ± 0.02, t(1978) = 7.84, p < 215 

.001, ηp
2
 = .085, Fig. S2B/E). In other words, the CSE increased with the conflict 216 

similarity between two consecutive trials. The conflict similarity modulation effect 217 

remained significant after regressing out the influence of physical proximity between 218 

the stimuli of consecutive trials (Note S2). As a control analysis, we also compared 219 

this approach to a two-stage analysis that first calculated the CSE for each previous × 220 

current trial conflict type condition and then tested the modulation of conflict 221 

similarity on the CSEs28. The two-stage analysis also showed a strong effect of 222 

conflict similarity (RT: β = 0.58 ± 0.04, t(493) = 14.74, p < .001, ηp
2
 = .383; ER: β = 223 

0.36 ± 0.05, t(493) = 7.01, p < .001, ηp
2

 = .321, Fig. S2A/D). Importantly, individual 224 

modulation effects of conflict similarity were positively correlated between the two 225 

approaches (RT: r = 0.48; ER: r = 0.86, both ps < 0.003, one-tailed), indicating the 226 

consistency of the estimated conflict similarity effects across the two approaches. 227 

 228 

Fig. 2. The conflict similarity modulation on the behavioral CSE in Experiment 1. (A) RT and (B) 229 

ER are plotted as a function of congruency types on trial n−1 and trial n. Each column shows one 230 

similarity level, as indicated by the defined angular difference between two conflict types. Error bars 231 

are standard errors. C = congruent; I = incongruent; RT = reaction time; ER = error rate. 232 

 233 

Experiment 2. 234 

Behavioral results. We next conducted an fMRI experiment using a shorter version of 235 

the same task with a different sample (n = 35, 17 females) to seek neural evidence of 236 

how different conflict types are organized. Using behavioral data, we first validated 237 

the experimental design by testing congruency effects in each of the five conflict 238 



types (Note S1; Fig. S1 C/D). We then tested the modulation of conflict similarity on 239 

the behavioral CSE using the linear mixed effect model as in Experiment 1 (except 240 

the two-stage method). Results showed a significant effect of conflict similarity 241 

modulation (RT: β = 0.24 ± 0.04, t(1148) = 6.36, p < .001, ηp
2
 = .096; ER: β = 0.33 ± 242 

0.06, t(1206) = 5.81, p < .001, ηp
2
 = .124, Fig. S2C/F), thus replicating the results of 243 

Experimental 1 and setting the stage for fMRI analysis. As in Experiment 1, the 244 

conflict similarity modulation effect remained significant after regressing out the 245 

influence of physical proximity between the stimuli of consecutive trials (Note S2). 246 

Brain activations modulated by conflict type dissimilarity with univariate analyses 247 

 248 

Fig. 3. The congruency effect and parametric modulation effect detected by uni-voxel analyses. 249 

Results displayed are thresholded with voxel-wise one-tailed p < .005 and cluster-size > 20 voxels. The 250 

congruency effect denotes the higher activation in incongruent than congruent condition. The positive 251 

parametric modulation effect (I_pm – C_pm) denotes the higher activation when the conflict type 252 

contained a higher ratio of Simon conflict component (bottom left panel). The negative parametric 253 

modulation effect [converted to positive with – (I_pm – C_pm)] denotes the higher activation when the 254 

conflict type contained a higher ratio of spatial Stroop conflict component (bottom right panel). I = 255 

incongruent; C = congruent; pm = parametric modulator. 256 

 257 

In the fMRI analysis, we first replicated the classic congruency effect by searching for 258 

brain regions showing higher univariate activation in incongruent than congruent 259 

conditions (GLM1, see Methods). Consistent with the literature20,40, this effect was 260 

observed in the pre-supplementary motor area (pre-SMA) and anterior cingulate 261 

cortex (ACC) areas (Fig. 3, Table S1). We then tested the encoding of conflict type as 262 



a cognitive space by identifying brain regions with activation levels parametrically 263 

covarying with the coordinates (i.e., axial angle relative to the horizontal axis) in the 264 

hypothesized cognitive space. As shown in Fig. 1B, change in the angle corresponds 265 

to change in spatial Stroop and Simon conflicts in opposite directions. Accordingly, in 266 

the left middle frontal gyrus (MFG), fMRI activation scaled with the increase in 267 

spatial Stroop conflict, whereas the right inferior parietal sulcus (IPS) and the right 268 

dorsomedial prefrontal cortex (dmPFC) displayed positive correlation between fMRI 269 

activation and Simon conflict (Fig. 3, Fig. S3, Table S1). 270 

To further test if the univariate results explain the conflict similarity modulation 271 

of the behavioral CSE (slope in Fig. S2C), we conducted brain-behavioral correlation 272 

analyses for regions identified above. Regions with higher spatial Stroop/Simon 273 

modulation effects were expected to trigger higher behavioral conflict similarity 274 

modulation effect on the CSE. However, none of the three regions (i.e., left MFG, 275 

right IPS and right dmPFC, Fig. 3) were positively correlated with the behavioral 276 

performance, all pFDR >.762, one-tailed. In addition, since the conflict type difference 277 

covaries with the orientation of the arrow location at the individual level (e.g., the 278 

stimulus in a higher level of Simon conflict is always closer to the horizontal axis, see 279 

Fig. S4), the univariate modulation effects may not reflect purely conflict type 280 

difference. To further tease these factors apart, we used multivariate analyses. 281 

Multivariate patterns of the right dlPFC encodes the conflict similarity 282 

 283 

Fig. 4. The conflict type effect. (A) Brain regions surviving the FDR-correction (pFDR < 0.05 and p < 284 

0.001) across the 360 regions (criterion 1). Labeled regions are those meeting the criterion 2. (B) The 285 

regions showing stronger encoding of conflict type in the incongruent than congruent conditions 286 



(criterion 2). ** pFDR < .01, *** pFDR < .001. (C) The brain-behavior correlation of the right 8C 287 

(criterion 3). (D) Illustration of the different encoding strength of conflict type similarity in incongruent 288 

versus congruent conditions of right 8C. l = left; r = right. 289 

 290 

The hypothesis that the brain encodes conflict types in a cognitive space predicts that 291 

similar conflict types will have similar neural representations. To test this prediction, 292 

we computed the representational similarity matrix (RSM) that encoded correlations 293 

of blood-oxygen-level dependent (BOLD) signal patterns between each pair of 294 

conflict type (conflict 1, 2, 3, 4 and 5, as shown in Fig. 1B) × congruency (congruent, 295 

incongruent) × arrow direction (up, down) × run × subject combinations for each of 296 

the 360 cortical regions from the Multi-Modal Parcellation (MMP) cortical atlas41,42. 297 

The RSM was then submitted to a linear mixed-effect model as the dependent 298 

variable to test whether the representational similarity in each region was modulated 299 

by various experimental variables (e.g., conflict type, spatial orientation, stimulus, 300 

response, etc., see Methods). The linear mixed-effect model was used to de-correlate 301 

conflict type and spatial orientation leveraging the between-subject manipulation of 302 

stimulus locations (Fig. S4).  303 

To validate this method, we applied this analysis to test the effects of 304 

response/stimulus features and found that representational similarity of the BOLD 305 

signal significantly covaried with whether two response/spatial location/arrow 306 

directions were the same most strongly in bilateral motor/visual/somatosensory areas, 307 

respectively (Fig. S5). We then identified the cortical regions encoding conflict type 308 

as a cognitive space by testing whether their RSMs can be explained by the similarity 309 

between conflict types. Specifically, we applied three independent criteria: (1) the 310 

cortical regions should exhibit a statistically significant positive conflict similarity 311 

effect on the RSM; (2) the conflict similarity effect should be stronger in incongruent 312 

than congruent trials to reflect flexible adjustment of cognitive control demand when 313 

conflict is present; and (3) the conflict similarity effect should be positively correlated 314 

with the behavioral conflict similarity modulation effect on the CSE (see Behavioral 315 

Results of Experiment 2). The first criterion revealed several cortical regions encoding 316 

the conflict similarity, including the 8C area (a subregion of dlPFC42), a47r, TPOJ3 317 

and V3CD in the right hemisphere, and the 6r, 7Am, 24dd, VMV1, VMV2, 7Pl, 23c 318 

and 25 areas in the left hemisphere (pFDRs < 0.05, with raw ps < 0.001, one-tailed, Fig. 319 

4A). We next tested whether these regions were related to cognitive control by 320 

comparing the strength of conflict similarity effect between incongruent and 321 

congruent conditions (criterion 2). Results revealed that the left lateral area 7P (7P1), 322 

left ventromedial visual area 1 (VMV1), left dorsal area 24d (24dd), right Brodmann 323 

area 8C (8C), and right V3CD met this criterion, pFDRs < .01, one-tailed (Table 1, Fig. 324 

4B), suggesting that the representation of conflict type was strengthened when 325 

conflict was present (e.g., Fig. 4D). The inter-subject brain-behavioral correlation 326 

analysis (criterion 3) showed that the strength of conflict similarity effect on RSM 327 

scaled with the modulation of conflict similarity on the CSE (slope in Fig. S2C) in 328 

right 8C (r = 0.43, pFDR = .027, one-tailed, Fig. 4C) but not in the other regions (all 329 

pFDR > .632, one-tailed). In addition, we did not find evidence supporting the encoding 330 



of congruency in the right 8C area (see Note S5), suggesting that the right 8C area 331 

specifically represents conflict similarity. In sum, we found converging evidence 332 

supporting that the right dlPFC (8C area) encoded conflict similarity, which further 333 

supports the hypothesis that conflict types are represented in a cognitive space.  334 

Multivariate patterns of visual and oculomotor areas encode stimulus orientation 335 

 336 

Fig. 5. The axial orientation effect. (A) Brain regions surviving the FDR-correction (pFDR < 0.05 and 337 

p < 0.001) across the 360 regions (criterion 1). Labeled regions are those meeting the criterion 2. (B) 338 

The regions showing stronger encoding of orientation in the incongruent than congruent conditions 339 

(criterion 2). * pFDR < .05, ** pFDR < .01, *** pFDR < .001. 340 

 341 

To tease apart the representation of conflict type from that of perceptual information, 342 

we tested the modulation of the spatial orientations of stimulus locations on RSM 343 

using the aforementioned RSA. We also applied three independent criteria: (1) the 344 

cortical regions should exhibit a statistically significant orientation effect on the RSM; 345 

(2) the conflict similarity effect should be stronger in incongruent than congruent 346 

trials; and (3) the orientation effect should not interact with the CSE, since the 347 

orientation effect was dissociated from the conflict similarity effect and was not 348 

expected to influence cognitive control. We observed increasing fMRI 349 

representational similarity between trials with more similar orientations of stimulus 350 

location in the occipital cortex, such as right V1, bilateral V2 and V3, right V4, left 351 

area temporoparietooccipital junction 3 (TPOJ3) and right PHT areas (FDR corrected 352 

ps < 0.05 and raw ps < 0.001). We also found the same effect in several oculomotor 353 

related regions, including the left frontal eye field (FEF), anterior 6m (6ma), area 354 

intraparietal 2 (IP2), right parietal area F (PF) and bilateral 5m, as well as other 355 

regions (Fig. 5A). Then we tested if any of these brain regions were related to the 356 

conflict representation by comparing their encoding strength between incongruent and 357 

congruent conditions. Results showed that the right V1, bilateral V2, left FEF, left 358 

IP2, right hippocampus (H) and right PF encoded stronger orientation effect in the 359 

incongruent than the congruent condition, pFDRs < .05, one-tailed (Table1, Fig. 5B). 360 

We then tested if any of these regions was related to the behavioral performance, and 361 

results showed that none of them positively correlated with the behavioral conflict 362 

similarity modulation effect, all pFDR > .675, one-tailed. Thus all regions are 363 

consistent with the criterion 3. Like the right 8C area, none of the reported areas 364 

directly encoded congruency (see Note S5). Taken together, we found that the visual 365 



and oculomotor regions encoded orientations of stimulus location in a continuous 366 

manner and that the encoding strength was stronger when conflict was present. 367 

To explore the relation between conflict type and orientation representations, we 368 

conducted representational connectivity (i.e., the similarity between two RSMs of two 369 

regions)43 analyses and found that among the orientation effect regions, the right V1 370 

and bilateral V2 showed significant representational connectivity with the right 8C 371 

compared to the controlled regions (including those encoding orientation effect but 372 

not showing larger encoding strength in incongruent than congruent conditions, as 373 

well as three other regions encoding none of our defined effects in the main RSA, see 374 

Methods). Compared with the largest connectivity strength in the controlled regions 375 

(i.e., the left V3, β = 0.1447 ± 0.0069), we found higher connectivity in the left V2, β 376 

= 0.1645 ± 0.0060, t(34) = 4.86, right V1, β = 0.1628 ± 0.0065, t(34) = 4.54, and 377 

right V2, β = 0.1678 ± 0.0074, t(34) = 5.65, all pFDR < .001, one-tailed (Fig. S6). 378 

 379 

Table 1. Summary statistics of regions showing larger encoding strength in 380 

incongruent than congruent conditions for the conflict type and 381 

orientation effects. 382 

Region name t(34) β(SD) Cohen’s d pFDR 

Conflict type effect 

left 7P1 3.13 0.0049 ± 0.0016 0.53 .011 

left VMV1 3.96 0.0077 ± 0.0019 0.67 .002 

left 24 7.82 0.0094 ± 0.0012 1.32 < .001 

right 8C 3.15 0.0073 ± 0.0023 0.53 .011 

right V3CD 2.86 0.0057 ± 0.0020 0.48 .017 

Orientation effect 

left V2 3.20 0.0107 ± 0.0033 0.54 .007 

left FEF 2.97 0.0066 ± 0.0022 0.50 .010 

left IP2 5.73 0.0129 ± 0.0022 0.97 .001 

right V1 2.70 0.0060 ± 0.0022 0.46 .014 

right V2 3.26 0.0083 ± 0.0025 0.55 .007 

right H 2.79 0.0037 ± 0.0013 0.47 .014 

right PF 5.31 0.0097 ± 0.0018 0.90 < .001 

 383 

Discussion 384 

Understanding how different types of conflict are resolved is essential to answer how 385 

cognitive control achieves adaptive behavior. However, the dichotomy between 386 

domain-general and/or domain-specific processes presents a dilemma15,21. 387 

Reconciliation of the two views also suffers from the inability to fully address how 388 

infinite conflict can be resolved by a limited set of cognitive control processes. In this 389 

study, we hypothesized that this issue can be addressed if conflict is organized as a 390 

cognitive space. Leveraging the well-known dissociation between the spatial Stroop 391 

and Simon conflict44-46, we designed five conflict types that are systematically 392 



different from each other. The cognitive space hypothesis predicted that the 393 

representational proximity/distance between two conflict types scales with their 394 

similarities/dissimilarities, which was tested at both behavioral and neural levels. 395 

Behaviorally, we found that the CSEs were linearly modulated by conflict similarity 396 

between consecutive trials, replicating and extending our previous study28. BOLD 397 

activity patterns in the right dlPFC further showed that the representational similarity 398 

between conflict types was modulated by their conflict similarity, and that strength of 399 

the modulation was positively associated with the modulation of conflict similarity on 400 

the behavioral CSE. We also observed that activity in three brain regions (right IPS, 401 

right dlPFC and left MFG) was parametrically modulated by the conflict type 402 

difference, though they did not directly explain the behavioral results. Additionally, 403 

we found that the visual regions encoded the spatial orientation of the stimulus 404 

location, which might provide the essential concrete information to determine the 405 

conflict type. Together, these results support the hypothesis that the conflicts are 406 

organized in a cognitive space that enables a limited set of cognitive control processes 407 

to resolve infinite possible types of conflict. 408 

 409 

Fig. 6. Illustration of the hypothesized dimensionalities of different representations. The shade of 410 

the red color indicates the degree of dimensionality (i.e., how many dimensions are needed to represent 411 

different states). The dimensionality of domain-general representation is extremely low, with all 412 

representations compressed to one dot. The dimensionality of domain-specific representation is 413 

extremely high, with each control state encoded in a unique and orthogonal dimension. The 414 

dimensionality of the organized representation is modest, enabling distant states to be separated but 415 

also allowing close states to share representations. The solid arrows show the axes of different 416 

dimensions. The dashed arrows indicate how the representational dimensionality can be reduced by 417 

projecting the independent dimensions to a common dimension. 418 

 419 

Conventionally, the domain-general view of control suggests a common 420 

representation for different types of conflict (Fig. 6, left), while the domain-specific 421 

view suggests dissociated representations for different types (Fig. 6, right). Previous 422 

research on this topic often adopts a binary manipulation of conflict21 (i.e., each 423 

domain only has one conflict type) and thus is not suitable to test the cognitive space 424 



hypothesis. Here, we parametrically manipulated the similarity of conflict in different 425 

conflict types and demonstrated that the two theories can be reconciled as a cognitive 426 

space22 (Fig. 6, middle). Specifically, the cognitive space provides a solution to use a 427 

single cognitive space organization to encode different types of conflict that are close 428 

(domain-general) or distant (domain-specific) to each other. It also shows the 429 

potential for how unlimited conflict types can be coded using limited resources (i.e., 430 

as different points in a low-dimensional cognitive space). Moreover, geometry can 431 

also emerge in the cognitive space20, which will allow for decomposition of a conflict 432 

type (e.g., how much conflict in each of the dimensions in the cognitive space) so that 433 

it can be mapped into the limited set of cognitive control processes. Such geometry 434 

enables fast learning of cognitive control settings from similar conflict types by 435 

providing a measure of similarity (e.g., as distance in space). 436 

If the dimensionality of the cognitive space of conflict is extremely high, the 437 

cognitive space solution would suffer the same criticism as the domain-specificity 438 

theory. We argue that the dimensionality is manageable for the human brain, as task 439 

information unrelated to differentiating conflicts can be removed. For example, the 440 

Simon conflict can be represented in a space consisting of spatial location, stimulus 441 

information and responses. Thus, the dimensionality of the cognitive space of conflict 442 

should not exceed the number of represented features. The dimensionality can be 443 

further reduced, as humans selectively represent a small number of features when 444 

learning task representations (e.g., spatial information is reduced to the horizontal 445 

dimension from the 3D space we live in)47. The reduced dimensionality does not only 446 

require less effort to represent the conflict, but also facilitates generalization of 447 

cognitive control settings among different conflict types26.  448 

Although our finding of cognitive space in the right dlPFC differs from other 449 

cognitive space studies24,25,48 that highlighted the orbitofrontal and hippocampus 450 

regions, it is consistent with the cognitive control literature. The prefrontal cortex has 451 

long been believed to be a key region of cognitive control representation49-51 and is 452 

widely engaged in multiple task demands12,52. However, it is not until recently that the 453 

multivariate representation in this region has been examined. For instance, Vaidya et 454 

al.29 reported that frontal regions presented latent states that are organized 455 

hierarchically. Freund et al.32 showed that dlPFC encoded the target and congruency 456 

in a typical color-word Stroop task. Taken together, we suggest that the right dlPFC 457 

might flexibly encode a variety of cognitive spaces to meet the dynamic task 458 

demands. In addition, we found no such representation in the left dlPFC (Note S6), 459 

indicating a possible lateralization. Previous studies showed that the left dlPFC was 460 

related to the expectancy-related attentional set up-regulation, while the right dlPFC 461 

was related to the online adjustment of control53,54, which is consistent with our 462 

findings. Moreover, the right PFC also represents a composition of single rules55, 463 

which may explain how the spatial Stroop and Simon types can be jointly encoded in 464 

a single space. 465 

We found that participants with stronger conflict representation as cognitive 466 

space in right dlPFC have also adjusted their conflict control to a greater extent based 467 

on the conflict similarity (Fig 4C). The finding suggests that the cognitive space 468 



organization of conflict guides cognitive control to adjust behavior. Previous studies 469 

have shown that participants may adopt different strategies to represent a task, with 470 

the model-based strategies benefitting goal-related behaviors more than the model-471 

free strategies56. Similarly, we propose that the cognitive space could serve as a 472 

mental model to assist fast learning and efficient organization of cognitive control 473 

settings. With the organization of a cognitive space, a new conflict can be quickly 474 

assigned a location in the cognitive space, which will facilitate the development of 475 

cognitive control settings for this conflict by interpolating nearby conflicts and/or 476 

projecting the location to axes representing different cognitive control processes. On 477 

the other hand, without a cognitive space, there would be no measure of similarity 478 

between conflict on different trials, hence limiting the ability of fast learning of 479 

cognitive control setting from similar trials.  480 

The cognitive space in the right dlPFC appears to be an abstraction of concrete 481 

information from the visual regions. We found that the right V1 and bilateral V2 482 

encoded the spatial orientation of the target location (Fig. 5) and showed strong 483 

representational connectivity with the right dlPFC (Fig. S6), suggesting that there 484 

might be information exchange between these regions. We speculate that the 485 

representation of spatial orientation may have provided the essential perceptual 486 

information to determine the conflict type (Fig. 1) and thus served as the critical input 487 

for the cognitive space. The conflict type representation further incorporates the 488 

stimulus-response mapping rules to the spatial orientation representation, so that 489 

vertically symmetric orientations can be recognized as the same conflict type (Fig. 490 

S4). In other words, the representation of conflict type involves the compression of 491 

perceptual information57, which is consistent with the idea of a low-dimensional 492 

representation of cognitive control26,31. The compression and abstraction processes 493 

might be why the frontoparietal regions are the top of hierarchy of information 494 

processing58 and why the frontoparietal regions are widely engaged in multiple task 495 

demands59. 496 

With conventional univariate analyses, we observed that the overall congruency 497 

effect was located at the medial frontal regions (i.e., pre-SMA and ACC), which is 498 

consistent with previous studies20,40. Beyond that, we also found regions that can be 499 

parametrically modulated by conflict type difference, including right IPS, right dlPFC 500 

(modulated by Simon difference) and left MFG (modulated by spatial Stroop 501 

difference). The lateralization of these regions is consistent with a previous finding19, 502 

which highlighted the difference of Stroop and Simon types with brain activities at 503 

different hemispheres. The scaling of brain activities based on conflict difference is 504 

potentially important to the representational organization of different types of conflict. 505 

However, we didn’t observe their brain-behavioral relevance. One possible reason is 506 

that the conflict (dis)similarity is a combination of (dis)similarity of spatial Stroop and 507 

Simon conflicts, but each univariate region only reflects difference along a single 508 

conflict domain. Also likely, the representational geometry is more of a multivariate 509 

problem than what univariate activities can capture60. Future studies may adopt 510 

approaches such as repetition suppression induced fMRI adaptation26 to test the role 511 

of univariate activities in task representations. 512 



One limitation of this study needs to be noted. To parametrically manipulate the 513 

conflict similarity levels, we adopted the spatial Stroop-Simon paradigm that enables 514 

parametrical combinations of spatial Stroop and Simon conflicts. However, since this 515 

paradigm is a two-alternative forced choice design, the behavioral CSE is not a pure 516 

measure of adjusted control but could be partly confounded by bottom-up factors such 517 

as feature integration61. Future studies may replicate our findings with a multiple-518 

choice design with confound-free trial sequences62. 519 

In sum, we showed that the cognitive control can be organized in an abstract 520 

cognitive space that is represented in the right dlPFC and guides cognitive control to 521 

adjust goal-directed behavior. The cognitive space hypothesis reconciles the long-522 

standing debate between the domain-general and domain-specific views of cognitive 523 

control and provides a parsimonious and more broadly applicable framework for 524 

understanding how our brains efficiently and flexibly represents multiple task 525 

settings. 526 

 527 

 528 

Materials and Methods 529 

Subjects 530 

In Experiment 1, we enrolled thirty-three college students (19-28 years old, average of 531 

21.5 ± 2.3 years old; 19 males). In Experiment 2, thirty-six college students were 532 

recruited, and one subject was excluded due to not following task instructions. The 533 

final sample of Experiment 2 consisted of thirty-five participants (19-29 years old, 534 

average of 22.3 ± 2.5 years old; 17 males). The sample sizes were determined based 535 

on our previous study28. All participants reported no history of psychiatric or 536 

neurological disorders and were right-handed, with normal or corrected-to-normal 537 

vision. The experiments were approved by the Institutional Review Board of the 538 

Institute of Psychology, Chinese Academy of Science. Informed consent was obtained 539 

from all subjects. 540 

 541 

Method Details 542 

Experiment 1 543 

Experimental Design. We adopted a modified spatial Stroop-Simon task28 (Fig. 1). 544 

The task was programmed with the E-prime 2.0 (Psychological Software Tools, Inc.). 545 

The stimulus was an upward or downward black arrow (visual angle of ~ 1°) 546 

displayed on a 17-inch LCD monitor with a viewing distance of ~60 cm. The arrow 547 

appeared inside a grey square at one of ten locations with the same distance from the 548 

center of the screen, including two horizontal (left and right), two vertical (top and 549 

bottom), and six corner (orientations of 22.5°, 45° and 67.5°) locations. The distance 550 

from the arrow to the screen center was approximately 3°. To dissociate orientation of 551 



stimulus locations and conflict types (see below), participants were randomly 552 

assigned to two sets of stimulus locations (one included top-right and bottom-left 553 

quadrants, and the other included top-left and bottom-right quadrants).  554 

Each trial started with a fixation cross displayed in the center for 100−300 ms, 555 

followed by the arrow for 600 ms and another fixation cross for 1100−1300 ms (the 556 

total trial length was fixed at 2000 ms). Participants were instructed to respond to the 557 

pointing direction of the arrow by pressing a left or right button and to ignore its 558 

location. The mapping between the arrow orientations and the response buttons was 559 

counterbalanced across participants. The task design introduced two possible sources 560 

of conflict: on one hand, the direction of the arrow is either congruent or incongruent 561 

with the vertical location of the arrow, thus introducing a spatial Stroop conflict33,63, 562 

which contains the dimensional overlap between task-relevant stimulus and task-563 

irrelevant stimulus1; on the other hand, the response (left or right button) is either 564 

congruent or incongruent with the horizontal location of the arrow, thus introducing a 565 

Simon conflict33,34, which contains the dimensional overlap between task-irrelevant 566 

stimulus and response1. Therefore, the five polar orientations of the stimulus location 567 

(from 0 to 90°) defined five unique combinations of spatial Stroop and Simon 568 

conflicts, with more similar orientations having more similar composition of conflict. 569 

More generally, the spatial orientation of the arrow location relative to the center of 570 

the screen forms a cognitive space of different blending of spatial Stroop and Simon 571 

conflict. 572 

The formal task consisted of 30 runs of 101 trials each, divided into three sessions 573 

of ten runs each. The participants completed one session each time and all three 574 

sessions within one week. Before each session, the participants performed training 575 

blocks of 20 trials repeatedly until the accuracy reached 90% in the most recent block. 576 

The trial sequences of the formal task were pseudo-randomly generated to ensure that 577 

each of the task conditions and their transitions occurred with equal number of trials.  578 

Experiment 2 579 

Experimental Design. The apparatus, stimuli and procedure were identical to 580 

Experiment 1 except for the changes below. The stimuli were back projected onto a 581 

screen (with viewing angle being ~3.9° between the arrow and the center of the 582 

screen) behind the subject and viewed via a surface mirror mounted onto the head 583 

coil. Due to the time constraints of fMRI scanning, the trial numbers decreased to a 584 

total of 340, divided into two runs with 170 trials each. To obtain a better 585 

hemodynamic model fitting, we generated two pseudo-random sequences optimized 586 

with a genetic algorithm64 conducted by the NeuroDesign package65 (see Note S3 for 587 

more detail). In addition, we added 6 seconds of fixation before each run to allow the 588 

stabilization of the hemodynamic signal, and 20 seconds after each run to allow the 589 

signal to drop to the baseline. 590 

Before scanning, participants performed two practice sessions. The first one 591 

contained 10 trials of center-displayed arrow and the second one contained 32 trials 592 

using the same design as the main task. They repeated both sessions until their 593 

performance accuracy for each session reached 90%, after which the scanning began. 594 



fMRI Image acquisition and preprocessing 595 

Functional imaging was performed on a 3T GE scanner (Discovery MR750) using 596 

echo-planar imaging (EPI) sensitive to BOLD contrast [in-plane resolution of 3.5 × 597 

3.5 mm2, 64 × 64 matrix, 37 slices with a thickness of 3.5 mm and no interslice skip, 598 

repetition time (TR) of 2000 ms, echo-time (TE) of 30 ms, and a flip angle of 90°]. In 599 

addition, a sagittal T1-weighted anatomical image was acquired as a structural 600 

reference scan, with a total of 256 slices at a thickness of 1.0 mm with no gap and an 601 

in-plane resolution of 1.0 × 1.0 mm2. 602 

Before preprocessing, the first three volumes of the functional images were 603 

removed due to the instability of the signal at the beginning of the scan. The 604 

anatomical and functional data were preprocessed with the fMRIprep 20.2.066 605 

(RRID:SCR_016216), which is based on Nipype 1.5.167 (RRID:SCR_002502). 606 

Specifically, BOLD runs were slice-time corrected using 3dTshift from AFNI 607 

2016020768 (RRID:SCR_005927). The BOLD time-series were resampled to the 608 

MNI152NLin2009cAsym space without smoothing. For a more detailed description 609 

of preprocessing, see Note S4. After preprocessing, we resampled the functional data 610 

to a spatial resolution of 3 × 3 × 3 mm3. All analyses were conducted in volumetric 611 

space, and surface maps are produced with Connectome Workbench 612 

(https://www.humanconnectome.org/software/connectome-workbench) for display 613 

purpose only. 614 

Quantification and Statistical Analysis 615 

Behavioral analysis 616 

Experiment 1. RT and ER were the two dependent variables analyzed. As for RTs, 617 

we excluded the first trial of each block (0.9%, for CSE analysis only), error trials 618 

(3.8%), trials with RTs beyond three SDs or shorter than 200 ms (1.3%) and post-619 

error trials (3.4%). For the ER analysis, the first trial of each block and trials after an 620 

error were excluded. To exclude the possible influence of response repetition, we 621 

centered the RT and ER data within the response repetition and response alternation 622 

conditions separately by replacing condition-specific mean with the global mean for 623 

each subject.  624 

To examine the modulation of conflict similarity on the CSE, we organized trials 625 

based on a 5 (previous trial conflict type) × 5 (current trial conflict type) × 2 (previous 626 

trial congruency) × 2 (current trial congruency) factorial design. As conflict similarity 627 

is commutive between conflict types, we expected the previous by current trial 628 

conflict type factorial design to be a symmetrical (e.g., a conflict 1-conflict 2 629 

sequence in theory has the same conflict similarity modulation effect as a conflict 2-630 

conflict 1 sequence), resulting a total of 15 conditions left for the first two factors of 631 

the design (i.e., previous × current trial conflict type). For each previous × current 632 

trial conflict type condition, the conflict similarity between the two trials can be 633 

quantified as the cosine of their angular difference. In the current design, there were 634 

five possible angular difference levels (0, 22.5°, 42.5°, 67.5° and 90°, see Fig. 1C). 635 



We further coded the previous by current trial congruency conditions (hereafter 636 

abbreviated as CSE conditions) as CC, CI, IC and II, with the first and second letter 637 

encoding the congruency (C) or incongruency (I) on the previous and current trial, 638 

respectively. As the CSE is operationalized as the interaction between previous and 639 

current trial congruency, it can be rewritten as a contrast of (CI – CC) – (II – IC). In 640 

other words, the load of CSE on CI, CC, II and IC conditions is 1, –1, –1 and 1, 641 

respectively. To estimate the modulation of conflict similarity on the CSE, we built a 642 

regressor by calculating the Kronecker product of the conflict similarity scores of the 643 

15 previous × current trial conflict similarity conditions and the CSE loadings of 644 

previous × current trial congruency conditions. This regressor was regressed against 645 

RT and ER data separately, which were normalized across participants and CSE 646 

conditions. The regression was performed using a linear mixed-effect model, with the 647 

intercept and the slope of the regressor for the modulation of conflict similarity on the 648 

CSE as random effects (across both participants and the four CSE conditions). As a 649 

control analysis, we built a similar two-stage model28. In the first stage, the CSE [i.e., 650 

(CI – CC) – (II – IC)] for each of the previous × current trial conflict similarity 651 

condition was computed. In the second stage, CSE was used as the dependent variable 652 

and was predicted using conflict similarity across the 15 previous × current trial 653 

conflict type conditions. The regression was also performed using a linear mixed 654 

effect model with the intercept and the slope of the regressor for the modulation of 655 

conflict similarity on the CSE as random effects (across participants). 656 

Experiment 2. Behavioral data was analyzed using the same linear mixed effect model 657 

as Experiment 1, with all the CC, CI, IC and II trials as the dependent variable. In 658 

addition, to test if fMRI activity patterns may explain the behavioral representations 659 

differently in congruent and incongruent conditions, we conducted the same analysis 660 

to measure behavioral modulation of conflict similarity on the CSE using congruent 661 

(CC and IC) and incongruent (CI and II) trials separately. 662 

Estimation of fMRI activity with univariate general linear model (GLM) 663 

To estimate voxel-wise fMRI activity for each of the experimental conditions, the 664 

preprocessed fMRI data of each run were analyzed with the GLM. We conducted 665 

three GLMs for different purposes. GLM1 aimed to validate the design of our study 666 

by replicating the engagement of frontoparietal activities in conflict processing 667 

documented in previous studies7,19, and to explore the cognitive space related regions 668 

that were parametrically modulated by the conflict type. Preprocessed functional 669 

images were smoothed using a 6-mm FWHM Gaussian kernel. We included 670 

incongruent and congruent conditions as main regressors and appended a parametric 671 

modulator for each condition. The modulation parameters for Conf 1, Conf 2, Conf 3, 672 

Conf 4, and Conf 5 trials were −2, −1, 0, 1 and 2, respectively. In addition, we also 673 

added event-related nuisance regressors, including error/missed trials, outlier trials 674 

(slower than three SDs of the mean or faster than 200 ms) and trials within two TRs 675 

of significant head motion (i.e., outlier TRs, defined as standard DVARS > 1.5 or FD 676 

> 0.9 mm from previous TR)41. On average there were 1.2 outlier TRs for each run. 677 

These regressors were convolved with a canonical hemodynamic response function 678 



(HRF) in SPM 12 (http://www.fil.ion.ucl.ac.uk/spm). We further added volume-level 679 

nuisance regressors, including the six head motion parameters, the global signal, the 680 

white matter signal, the cerebrospinal fluid signal, and outlier TRs. Low-frequency 681 

signal drifts were filtered using a cutoff period of 128 s. The two runs were regarded 682 

as different sessions and incorporated into a single GLM to get more power. This 683 

yielded two beta maps (i.e., a main effect map and a parametric modulation map) for 684 

the incongruent and congruent conditions, respectively and for each subject. At the 685 

group level, paired t-tests were conducted between incongruent and congruent 686 

conditions, one for the main effect and the other for the parametric modulation effect. 687 

Since the spatial Stroop and Simon conflict change in the opposite direction to each 688 

other, a positive modulation effect would reflect a higher brain activation when there 689 

is more Simon conflict, and a negative modulation effect would reflect a higher brain 690 

activation for more spatial Stroop conflict. To avoid confusion, we converted the 691 

modulation effect of spatial Stroop to positive by using a contrast of [– (I_pm – 692 

C_pm)] throughout the results presentation. Results were thresholded by 3dclust 693 

function in AFNI 69 with voxel-wise p < .005 and cluster-size > 20 voxels, which was 694 

supposed to produce a desirable balance between Type I and II error rates70. To 695 

visualize the parametric modulation effects, we conducted a similar GLM (GLM2), 696 

except we used incongruent and congruent conditions from each conflict type as 697 

separate regressors with no parametric modulation. Then we extracted beta 698 

coefficients for each regressor and each participant with regions observed in GLM1 as 699 

regions of interest, and finally got the incongruent−congruent contrasts for each 700 

conflict type at the individual level. We reported the results in Fig. 3, Table S1, and 701 

Fig. S3. Visualization of the uni-voxel results was made by the MRIcron 702 

(https://www.mccauslandcenter.sc.edu/mricro/mricron/). 703 

The GLM3 aimed to prepare for the representational similarity analysis (see 704 

below). There were several differences compared to GLM1. The unsmoothed 705 

functional images after preprocessing were used. This model included 20 event-706 

related regressors, one for each of the 5 (conflict type) × 2 (congruency condition) × 2 707 

(arrow direction) conditions. The event-related nuisance regressors were similar to 708 

GLM1, but with additional regressors of response repetition and post-error trials to 709 

account for the nuisance inter-trial effects. To fully expand the variance, we 710 

conducted one GLM analysis for each run. After this procedure, a voxel-wise fMRI 711 

activation map was obtained per condition, run and subject. 712 

Representational similarity analysis (RSA) 713 

To measure the neural representation of conflict similarity, we adopted the RSA. 714 

RSAs were conducted on each of the 360 cortical regions of a volumetric version of 715 

the MMP cortical atlas42. To de-correlate the factors of conflict type and orientation of 716 

stimulus location, we leveraged the between-subject manipulation of stimulus 717 

locations and conducted RSA in a cross-subject fashion (Fig. S4)60,71. The beta 718 

estimates from GLM3 were noise-normalized by dividing the original beta 719 

coefficients by the square root of the covariance matrix of the error terms72. For each 720 

cortical region, we calculated the Pearson’s correlations between fMRI activity 721 



patterns for each run and each subject, yielding a 1400 (20 conditions × 2 runs × 35 722 

participants) × 1400 RSM. The correlations were calculated in a cross-voxel manner 723 

using the fMRI activation maps obtained from GLM3 described in the previous 724 

section. Similar to the behavioral analyses, we assumed the conflict similarity 725 

between two trials is commutive and hence collapsed the RSM along the diagonal and 726 

converted the lower triangle into a vector, which was then z-transformed and 727 

submitted to a linear mixed effect model as the dependent variable. The linear mixed 728 

effect model also included regressors of conflict similarity and orientation similarity. 729 

Importantly, conflict similarity was based on how Simon and spatial Stroop conflict 730 

are combined and hence was calculated by first rotating all subject’s stimulus location 731 

to the top-right and bottom-left quadrants, whereas orientation was calculated using 732 

original stimulus locations. As a result, the regressors representing conflict similarity 733 

and orientation similarity were de-correlated. Similarity between two conditions was 734 

measured as the cosine value of the angular difference. Other regressors included a 735 

target similarity regressor (i.e., whether the arrow directions were identical), a 736 

response similarity regressor (i.e., whether the correct responses were identical); a 737 

spatial Stroop distractor regressor (i.e., vertical distance between two stimulus 738 

locations); a Simon distractor regressor (i.e., horizontal distance between two stimulus 739 

locations). Additionally, we also included three regressors denoting the similarity of 740 

Run (i.e., whether two conditions are within the same run), Subject (i.e., whether two 741 

conditions are within the same subject), and Group (i.e., whether two conditions are 742 

within the same subject group, according to the stimulus-response mapping). We also 743 

added two regressors including ROI-mean fMRI activations for each condition of the 744 

pair to remove the possible uni-voxel influence on the RSM. A last term was the 745 

intercept. The intercept and slopes of the regressors were set as random effects at the 746 

subject level. Individual effects for each regressor were also extracted from the model 747 

for statistical inference and brain-behavioral correlation analyses. In brain-behavioral 748 

analyses, only the RT was used as behavioral measure to be consistent with the fMRI 749 

results, where the error trials were regressed out. 750 

The statistical significance of these beta estimates was determined with one-751 

sample t-tests (one-tailed). Multiple comparison correction was applied with false 752 

discovery rate (FDR) approach73 across all cortical regions (pFDR < 0.05), together 753 

with a threshold of 0.001 for each region. To test if the representation strengths are 754 

different between congruent and incongruent conditions, we also conducted the RDM 755 

analyses using only congruent and incongruent trials separately. Individual effects 756 

were extracted from each model and tested using a paired t-test. To visualize the 757 

difference, we plotted the effect-related patterns (the predictor multiplied by the slope, 758 

plus the residual) as a function of the similarity levels (Fig. 4D). 759 

Representational connectivity analysis 760 

To explore the possible relevance between the conflict type and the orientation 761 

effects, we conducted representational connectivity43 between regions showing 762 

evidence encoding conflict similarity and orientation similarity. Similar to the RSA 763 

mentioned above, the z-transformed RSM vector of each region were extracted and 764 



submitted to a mixed linear model, with the RSM of the conflict type region (i.e., the 765 

right 8C) as the dependent variable, and the RSM of one of the orientation regions 766 

(e.g., bilateral V2) as the predictor. Intercept and the slope of the regressor were set as 767 

random effects at the subject level, and individual coefficients of the slope were 768 

extracted for further statistical analysis. The mixed effect model was conducted for 769 

each pair of regions, respectively. Considering there might be strong intrinsic 770 

correlations across the RSMs induced by the nuisance factors, such as the within-771 

subject similarity, we added two sets of regions as control. First, we selected regions 772 

without showing any effects of interest (i.e., qFDR > 0.05 for all the conflict type, 773 

orientation, congruency, target, response, spatial Stroop distractor and Simon 774 

distractor effects). Second, we selected regions of orientation effect meeting the first 775 

but not the second criterion, to account for the potential correlation between regions 776 

of the two partly orthogonal regressors (Fig. S6). Existence of representational 777 

connectivity was defined by a higher connectivity slope than any of the control 778 

regions with paired-t tests. 779 
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